Collect. Czech. Chem. Commun.
1938, 10, 148-152
https://doi.org/10.1135/cccc19380148
Sur une nouvelle application de la règle de bredt
R. Lukeš
Crossref Cited-by Linking
- Xu Mizhi, Bullard Krista K., Bacsa John, Gutekunst Will R.: Halide Abstraction-Mediated Synthesis of a Highly Twisted Amide. J. Org. Chem. 2024, 89, 12779. <https://doi.org/10.1021/acs.joc.4c01192>
- Zhao Qun, Li Guangchen, Nareddy Pradeep, Jordan Frank, Lalancette Roger, Szostak Roman, Szostak Michal: Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N−C(X) Resonance. Angewandte Chemie 2022, 134. <https://doi.org/10.1002/ange.202207346>
- Zhao Qun, Li Guangchen, Nareddy Pradeep, Jordan Frank, Lalancette Roger, Szostak Roman, Szostak Michal: Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N−C(X) Resonance. Angew Chem Int Ed 2022, 61. <https://doi.org/10.1002/anie.202207346>
- Pathak Dibyajyoti, Srivastava Aasheesh: Macrocyclic enforcement of twist in a secondary amide: reactivity and influence on photoisomerisation. Chem. Commun. 2022, 58, 12653. <https://doi.org/10.1039/D2CC04780B>
- Meng Guangrong, Zhang Jin, Szostak Michal: Acyclic Twisted Amides. Chem. Rev. 2021, 121, 12746. <https://doi.org/10.1021/acs.chemrev.1c00225>
- Li Guangchen, Ma Siyue, Szostak Michal: Amide Bond Activation: The Power of Resonance. Trends in Chemistry 2020, 2, 914. <https://doi.org/10.1016/j.trechm.2020.08.001>
- Stone Elizabeth A., Mercado Brandon Q., Miller Scott J.: Structure and Reactivity of Highly Twisted N-Acylimidazoles. Org. Lett. 2019, 21, 2346. <https://doi.org/10.1021/acs.orglett.9b00624>
- Amatov Tynchtyk, Jangra Harish, Pohl Radek, Cisařová Ivana, Zipse Hendrik, Jahn Ullrich: Unique Stereoselective Homolytic C−O Bond Activation in Diketopiperazine‐Derived Alkoxyamines by Adjacent Amide Pyramidalization. Chemistry A European J 2018, 24, 15336. <https://doi.org/10.1002/chem.201803284>
- Liu Chengwei, Shi Shicheng, Liu Yongmei, Liu Ruzhang, Lalancette Roger, Szostak Roman, Szostak Michal: The Most Twisted Acyclic Amides: Structures and Reactivity. Org. Lett. 2018, 20, 7771. <https://doi.org/10.1021/acs.orglett.8b03175>
- Kovács Ervin, Rózsa Balázs, Csomos Attila, Csizmadia Imre G., Mucsi Zoltán: Amide Activation in Ground and Excited States. Molecules 2018, 23, 2859. <https://doi.org/10.3390/molecules23112859>
- Liu Chengwei, Szostak Michal: Twisted Amides: From Obscurity to Broadly Useful Transition‐Metal‐Catalyzed Reactions by N−C Amide Bond Activation. Chemistry A European J 2017, 23, 7157. <https://doi.org/10.1002/chem.201605012>
- Adachi Shinya, Kumagai Naoya, Shibasaki Masakatsu: Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by metal coordination. Chem. Sci. 2017, 8, 85. <https://doi.org/10.1039/C6SC03669D>
- Szostak Roman, Aubé Jeffrey, Szostak Michal: Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C–N Rotational Pathway. J. Org. Chem. 2015, 80, 7905. <https://doi.org/10.1021/acs.joc.5b00881>
- Szostak Michal, Aubé Jeffrey: Chemistry of Bridged Lactams and Related Heterocycles. Chem. Rev. 2013, 113, 5701. <https://doi.org/10.1021/cr4000144>
- Hutchby Marc, Houlden Chris E., Haddow Mairi F., Tyler Simon N. G., Lloyd‐Jones Guy C., Booker‐Milburn Kevin I.: Switching Pathways: Room‐Temperature Neutral Solvolysis and Substitution of Amides. Angewandte Chemie 2012, 124, 563. <https://doi.org/10.1002/ange.201107117>
- Hutchby Marc, Houlden Chris E., Haddow Mairi F., Tyler Simon N. G., Lloyd‐Jones Guy C., Booker‐Milburn Kevin I.: Switching Pathways: Room‐Temperature Neutral Solvolysis and Substitution of Amides. Angew Chem Int Ed 2012, 51, 548. <https://doi.org/10.1002/anie.201107117>
- Szostak Michal, Aubé Jeffrey: Medium-bridged lactams: a new class of non-planar amides. Org. Biomol. Chem. 2011, 9, 27. <https://doi.org/10.1039/C0OB00215A>
- Clayden Jonathan, Moran Wesley J.: Das gebogene Amid 2‐Chinuclidon: Synthese nach 60 Jahren. Angewandte Chemie 2006, 118, 7276. <https://doi.org/10.1002/ange.200603016>
- Clayden Jonathan, Moran Wesley J.: The Twisted Amide 2‐Quinuclidone: 60 Years in the Making. Angew Chem Int Ed 2006, 45, 7118. <https://doi.org/10.1002/anie.200603016>
- Tani Kousuke, Stoltz Brian M.: Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate. Nature 2006, 441, 731. <https://doi.org/10.1038/nature04842>
- Buynak John D., Rao A. Srinivasa, Adam Greg, Nidamarthy Sirishkumar D., Zhang Hongming: Synthesis of the First 2‘,6 Bridged Penams. J. Am. Chem. Soc. 1998, 120, 6846. <https://doi.org/10.1021/ja980195z>
- Hall H. K., El-Shekeil Ali: Anti-bredt monomers. Polymer Bulletin 1980, 2, 829. <https://doi.org/10.1007/BF00255511>
- Hall H. K., El-Shekeil Ali: Anti-bredt monomers. Polymer Bulletin 1980, 3, 233. <https://doi.org/10.1007/BF00291963>
- Levkoeva E. I., Nikitskaya E. S., Yakhontov L. N.: Synthesis and transformations of 6,6,7,7-tetramethyl-2-quinuclidone. Chem Heterocycl Compd 1971, 7, 349. <https://doi.org/10.1007/BF00944421>
- Moll F.: Kondensierte Azetidinone‐(2) 3. Mitt.: Physikalischen Strukturbestimmung von 1‐Azabicyclo[4,2,0]octanonen‐(2). Archiv der Pharmazie 1968, 301, 263. <https://doi.org/10.1002/ardp.19683010405>
- Meyer Walter L., Olsen Ronald G.: 2-(4-Piperidyl)ethanal and 3-(4-piperidyl)propanal. Can. J. Chem. 1967, 45, 1459. <https://doi.org/10.1139/v67-238>
- Pracejus von H., Kehlen M., Kehlen H., Matschiner H.: Neues zur sterischen mesomeriehinderung bei lactamen vom typ des α-chinuclidons. Tetrahedron 1965, 21, 2257. <https://doi.org/10.1016/S0040-4020(01)93880-3>
- Naegeli C., Tyabji A., Conrad L., Litwan F.: Über die Einwirkung von Wasser auf aromatische lsocyansäure‐ester. Helvetica Chimica Acta 1938, 21, 1100. <https://doi.org/10.1002/hlca.193802101139>
- Prelog V., Cerkovnikov E., Ustricev G.: Über die Bildung der bicyclischen Amine mit Stickstoff als Verzweigungsatom. Justus Liebigs Ann. Chem. 1938, 535, 37. <https://doi.org/10.1002/jlac.19385350104>