Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1969, 34, 3428-3435
https://doi.org/10.1135/cccc19693428

Liquid-vapour equilibrium in systems of electrolytic components. V. The system CH3OH-H2O-LiCl at 60 °C

M. Broul, K. Hlavatý and J. Linek

Crossref Cited-by Linking

  • Yadav Swati, Angira Rakesh: Parameter estimation in vapor–liquid equilibrium modeling of compounds related to biodiesel production using opposite point-based differential evolution algorithm. Environ Sci Pollut Res 2024. <https://doi.org/10.1007/s11356-024-35257-8>
  • Yang Fufang, Kontogeorgis Georgios M., de Hemptinne Jean-Charles: Composition-dependence of relative static permittivity in ePPC-SAFT for mixed-solvent alkali halides. Fluid Phase Equilibria 2024, 583, 114103. <https://doi.org/10.1016/j.fluid.2024.114103>
  • Yang Fufang, Kontogeorgis Georgios M., de Hemptinne Jean-Charles: Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions. II. Alkali bromides, iodides, fluorides, and lithium halides. Fluid Phase Equilibria 2023, 573, 113853. <https://doi.org/10.1016/j.fluid.2023.113853>
  • Yang Fufang, Ngo Tri Dat, Kontogeorgis Georgios M., de Hemptinne Jean-Charles: A Benchmark Database for Mixed-Solvent Electrolyte Solutions: Consistency Analysis Using E-NRTL. Ind. Eng. Chem. Res. 2022, 61, 15576. <https://doi.org/10.1021/acs.iecr.2c00059>
  • Graaf G.H., Winkelman J.G.M.: Methanol: association behaviour, third-law entropy analysis and determination of the enthalpy of formation. Fluid Phase Equilibria 2021, 529, 112851. <https://doi.org/10.1016/j.fluid.2020.112851>
  • Baird Zachariah Steven, Uusi-Kyyny Petri, Witos Joanna, Rantamäki Antti H., Sixta Herbert, Wiedmer Susanne K., Alopaeus Ville: Vapor–Liquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water. J. Chem. Eng. Data 2020, 65, 2405. <https://doi.org/10.1021/acs.jced.9b01039>
  • Yu Xiaoping, Wang Huan, Guo Yafei, Deng Tianlong: Phase Equilibrium and Solvation Effect of the Ternary Mixture Solvent System (LiCl + CH3OH + H2O) at 298.15, 308.15 and 318.15 K. J Solution Chem 2019, 48, 515. <https://doi.org/10.1007/s10953-019-00865-3>
  • Tsivintzelis Ioannis, Bjørner Martin Gamel, Kontogeorgis Georgios M.: Recent advances with association models for practical applications. Molecular Physics 2018, 116, 1921. <https://doi.org/10.1080/00268976.2018.1465604>
  • Fernández Luís J., Ortega Juan, Wisniak Jaime: A rigorous method to evaluate the consistency of experimental data in phase equilibria. Application to VLE and VLLE. AIChE Journal 2017, 63, 5125. <https://doi.org/10.1002/aic.15876>
  • Matsuda Hiroyuki, Inaba Koji, Sumida Hirofumi, Kurihara Kiyofumi, Tochigi Katsumi, Ochi Kenji: Vapor-liquid equilibria of binary and ternary mixtures containing ethyl lactate and effect of ethyl lactate as entrainer. Fluid Phase Equilibria 2016, 420, 50. <https://doi.org/10.1016/j.fluid.2015.12.029>
  • Hartanto Dhoni, Gupta Bhupender S., Taha Mohamed, Lee Ming-Jer: Isobaric vapour–liquid equilibrium of (tert-butanol+water) system with biological buffer TRIS at 101.3kPa. The Journal of Chemical Thermodynamics 2016, 98, 159. <https://doi.org/10.1016/j.jct.2016.03.013>
  • Iwai Yoshio, Taniguchi Issei: Correlation of phase equilibria for the systems containing 1-butanol+water by concentration dependent surface area parameter model. Fluid Phase Equilibria 2014, 362, 35. <https://doi.org/10.1016/j.fluid.2013.08.038>
  • Piazza L., Span R.: An equation of state for methanol including the association term of SAFT. Fluid Phase Equilibria 2013, 349, 12. <https://doi.org/10.1016/j.fluid.2013.03.024>
  • Tsivintzelis Ioannis, Musko Nikolai E., Baiker Alfons, Grunwaldt Jan-Dierk, Kontogeorgis Georgios M.: Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The Journal of Supercritical Fluids 2013, 84, 155. <https://doi.org/10.1016/j.supflu.2013.09.020>
  • Matsuda Hiroyuki, Takahara Hideyuki, Fujino Satoshi, Constantinescu Dana, Kurihara Kiyofumi, Tochigi Katsumi, Ochi Kenji, Gmehling Jürgen: Selection of entrainers for the separation of the binary azeotropic system methanol+dimethyl carbonate by extractive distillation. Fluid Phase Equilibria 2011, 310, 166. <https://doi.org/10.1016/j.fluid.2011.08.007>
  • Pellegrini Laura A., Gamba Simone, Moioli Stefania: Using an Adaptive Parameter Method for Process Simulation of Nonideal Systems. Ind. Eng. Chem. Res. 2010, 49, 4923. <https://doi.org/10.1021/ie901773q>
  • Pátek J., Klomfar J.: Thermodynamic properties of the LiCl–H2O system at vapor–liquid equilibrium from 273K to 400K. International Journal of Refrigeration 2008, 31, 287. <https://doi.org/10.1016/j.ijrefrig.2007.05.003>
  • Shulgin Ivan L., Ruckenstein Eli: An Improved Local Composition Expression and Its Implication for Phase Equilibrium Models. Ind. Eng. Chem. Res. 2008, 47, 7877. <https://doi.org/10.1021/ie800897j>
  • Kolář P., Nakata H., Tsuboi A., Wang P., Anderko A.: Measurement and modeling of vapor–liquid equilibria at high salt concentrations. Fluid Phase Equilibria 2005, 228-229, 493. <https://doi.org/10.1016/j.fluid.2004.10.018>
  • Pérez-Salado Kamps Álvaro: Model for the Gibbs Excess Energy of Mixed-Solvent (Chemical-Reacting and Gas-Containing) Electrolyte Systems. Ind. Eng. Chem. Res. 2005, 44, 201. <https://doi.org/10.1021/ie049543y>
  • Sun Tongfan, Bullock Kerry R., Teja Amyn S.: Correlation and prediction of salt effects on vapor–liquid equilibrium in alcohol–water–salt systems. Fluid Phase Equilibria 2004, 219, 257. <https://doi.org/10.1016/j.fluid.2004.01.006>
  • Kurihara Kiyofumi, Egawa Yusuke, Ochi Kenji, Kojima Kazuo: Evaluation of thermodynamic consistency of isobaric and isothermal binary vapor–liquid equilibrium data using the PAI test. Fluid Phase Equilibria 2004, 219, 75. <https://doi.org/10.1016/j.fluid.2004.01.018>
  • Sieder Georg, Maurer Gerd: An extension of the Peng–Robinson equation of state for the correlation and prediction of high-pressure phase equilibrium in systems containing supercritical carbon dioxide and a salt. Fluid Phase Equilibria 2004, 225, 85. <https://doi.org/10.1016/j.fluid.2004.08.005>
  • Tischmeyer M, Arlt W: Determination of binary vapor–liquid equilibria (VLE) of three fast reacting esterification systems. Chemical Engineering and Processing: Process Intensification 2004, 43, 357. <https://doi.org/10.1016/S0255-2701(03)00115-6>
  • Camy S., Pic J.-S., Badens E., Condoret J.-S.: Fluid phase equilibria of the reacting mixture in the dimethyl carbonate synthesis from supercritical CO2. The Journal of Supercritical Fluids 2003, 25, 19. <https://doi.org/10.1016/S0896-8446(02)00087-6>
  • Wu Ying Guang, Tabata Masaaki, Takamuku Toshiyuki, Yamaguchi Atsushi, Kawaguchi Tomomi, Chung Nguyen Huu: An extended Johnson–Furter equation to salting-out phase separation of aqueous solution of water-miscible organic solvents. Fluid Phase Equilibria 2001, 192, 1. <https://doi.org/10.1016/S0378-3812(01)00620-3>
  • Aznar M., Telles A.S.: Prediction of electrolyte vapor-liquid equilibrium by UNIFAC-Dortmund. Braz. J. Chem. Eng. 2001, 18, 127. <https://doi.org/10.1590/S0104-66322001000200001>
  • Clausen Iven, Arlt Wolfgang: A priori-Berechnung von Phasengleichgewichten für die thermische Verfahrenstechnik mit COSMO-RS. Chem.-Ing.-Tech. 2000, 72, 727. <https://doi.org/10.1002/1522-2640(200007)72:7<727::AID-CITE727>3.0.CO;2-S>
  • Lee Lloyd L.: Thermodynamic consistency and reference scale conversion in multisolvent electrolyte solutions. Journal of Molecular Liquids 2000, 87, 129. <https://doi.org/10.1016/S0167-7322(00)00117-3>
  • Hernández-Garduza Otilio, Garcı́a-Sánchez Fernando, Neau Evelyne, Rogalski Marek: Equation of state associated with activity coefficient models to predict low and high pressure vapor–liquid equilibria. Chemical Engineering Journal 2000, 79, 87. <https://doi.org/10.1016/S1385-8947(00)00138-8>
  • Ruckenstein E., Shulgin I.: Modified Local Composition and Flory−Huggins Equations for Nonelectrolyte Solutions. Ind. Eng. Chem. Res. 1999, 38, 4092. <https://doi.org/10.1021/ie990230q>
  • Chou T.-J., Tanioka A.: Predicting the Effect of Dissolved Salt on the Vapour-Liquid Equilibria for Alcohol-Water-Salt Systems. Chemical Engineering Research and Design 1999, 77, 329. <https://doi.org/10.1205/026387699526269>
  • Adrian T., Wendland M., Hasse H., Maurer G.: High-pressure multiphase behaviour of ternary systems carbon dioxide–water–polar solvent: review and modeling with the Peng–Robinson equation of state. The Journal of Supercritical Fluids 1998, 12, 185. <https://doi.org/10.1016/S0896-8446(98)00087-4>
  • Lee Lloyd L.: A molecular theory of Setchenov's salting-out principle and applications in mixed-solvent electrolyte solutions. Fluid Phase Equilibria 1997, 131, 67. <https://doi.org/10.1016/S0378-3812(96)03198-6>
  • Lee L.L., Lee L.-J., Ghonasgi D., Llano-Restrepo M., Chapman W.G., Shukla K.P., Lomba E.: Theory and simulation for electrolyte solutions: applications to the phase equilibria of mixed solvent systems. Fluid Phase Equilibria 1996, 116, 185. <https://doi.org/10.1016/0378-3812(95)02886-2>
  • Lin Cheng-Long, Lee Liang-Sun, Tseng Hsieng-Cheng: Thermodynamic behavior of electrolyte solutions. Fluid Phase Equilibria 1993, 90, 57. <https://doi.org/10.1016/0378-3812(93)85004-6>
  • Lin Cheng-Long, Lee Liang-Sun, Tseng Hsieng-Cheng: Thermodynamic behavior of electrolyte solutions. Fluid Phase Equilibria 1993, 90, 81. <https://doi.org/10.1016/0378-3812(93)85005-7>
  • Plačkov D., Štern I.: Liquid-liquid equilibria for ternary systems of cyclohexane-water and C1 to C3 alcohols: data and predictions. Fluid Phase Equilibria 1992, 71, 189. <https://doi.org/10.1016/0378-3812(92)85013-X>
  • Oh S.-K., Campbell S.W.: Vapor-Liquid equilibrium for systems comprised of a non-volatile strong electrolyte in a mixed solvent. Fluid Phase Equilibria 1992, 76, 237. <https://doi.org/10.1016/0378-3812(92)85091-L>
  • Wu Rong-Song, Lee Lloyd L.: Vapor-liquid equilibria of mixed-solvent electrolyte solutions: ion-size effects based on the MSA theory. Fluid Phase Equilibria 1992, 78, 1. <https://doi.org/10.1016/0378-3812(92)87026-J>
  • Kodejš Zdeněk, Sacchetto Giuseppe A.: Solvent activity in (Ag, Tl)NO3–dimethyl sulfoxide liquid mixtures from vapour-pressure measurements. J. Chem. Soc., Faraday Trans. 1992, 88, 2187. <https://doi.org/10.1039/FT9928802187>
  • Kojima Kazuo, Man Moon Hung, Ochi Kenji: Thermodynamic consistency test of vapor-liquid equilibrium data. Fluid Phase Equilibria 1990, 56, 269. <https://doi.org/10.1016/0378-3812(90)85108-M>
  • Gering Kevin L., Lee Lloyd L.: Prediction of vapor-liquid equilibria of binary-solvent electrolytes. Fluid Phase Equilibria 1989, 53, 199. <https://doi.org/10.1016/0378-3812(89)80087-1>
  • Engels H.: Description of the system H2O/CH3OH/LiBr with the Wilson equation and a suitable solvation model. Fluid Phase Equilibria 1987, 35, 93. <https://doi.org/10.1016/0378-3812(87)80006-7>
  • Vetere Alessandro: Vapor-liquid equilibria calculations by means of an equation of state. Chemical Engineering Science 1983, 38, 1281. <https://doi.org/10.1016/0009-2509(83)80048-7>
  • Hála E.: Vapor-liquid equilibria of strong electrolytes in systems containing mixed solvent. Fluid Phase Equilibria 1983, 13, 311. <https://doi.org/10.1016/0378-3812(83)80102-2>
  • Schmitt D., Vogelpohl A.: Prediction of the salt effect on the vapour-liquid equilibrium of binary mixtures. Fluid Phase Equilibria 1982, 9, 167. <https://doi.org/10.1016/0378-3812(82)80013-7>
  • Flageollet C., Cao M. Dinh, Mirabel P.: Experimental study of nucleation in binary mixtures: The methanol–water and n-propanol–water systems. The Journal of Chemical Physics 1980, 72, 544. <https://doi.org/10.1063/1.438941>
  • Furter William F.: Salt effect in distillation: A literature review II. Can J Chem Eng 1977, 55, 229. <https://doi.org/10.1002/cjce.5450550301>