Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1979, 44, 700-710
https://doi.org/10.1135/cccc19790700

The flow of liquid in a stream from the standard turbine impeller

Ivan Fořta, Hans-Otto Möckelb, Jan Drbohlavc and Miroslav Hracha

a Department of Chemical Engineering, Prague Institute of Chemical Technology, 166 28 Prague 6, Czechoslovakia
b Komplette Chemieanlagen, 801 Dresden, G.D.R.
c Dairy Research Institute, 110 00 Prague 1

Crossref Cited-by Linking

  • Kysela Bohuš, Konfršt Jiří, Fořt Ivan, Chára Zdeněk: CFD Simulation of the Discharge Flow from Standard Rushton Impeller. International Journal of Chemical Engineering 2014, 2014, 1. <https://doi.org/10.1155/2014/706149>
  • Buchbender Florian, Fischer Armin, Pfennig Andreas: Influence of compartment geometry on the residence time of single drops in Kühni extraction columns. Chemical Engineering Science 2013, 104, 701. <https://doi.org/10.1016/j.ces.2013.10.010>
  • Fořt Ivan: Comments on ‘Turbulent flow of shear-thinning liquids in stirred tanks—The effects of Reynolds number and flow index’ by Venneker et al. [Chem. Eng. Res. Des. 88 (2010) 827–843]. Chemical Engineering Research and Design 2011, 89, 2196. <https://doi.org/10.1016/j.cherd.2010.10.008>
  • Balachandar S.: Response to Comments on “Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I—Mean flow, circular jet and tip vortex scaling” by H. S. Yoon, D. F. Hill, S. Balachandar, R. J. Adrian and M. Y. Ha. Chemical Engineering Science 2006, 61, 4131. <https://doi.org/10.1016/j.ces.2005.09.017>
  • Fořt Ivan: Comments on “Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I—Mean flow, circular jet and tip vortex scaling” by H.S. Yoon, D.F. Hill, S. Balachandar, R.J. Adrian and M.Y. Ha. Chemical Engineering Science 2006, 61, 4129. <https://doi.org/10.1016/j.ces.2005.09.018>
  • Rogalewicz V., Fořt I.: Stochastic model of an agitated gas-liquid system. Comput Chem Engrg 1991, 15, 437. <https://doi.org/10.1016/0098-1354(91)87021-Z>
  • Magni F., Costes J., Bertrand J., Couderc J. P.: Structure des écoulements dans une cuve à fond bombé agitée par une turbine de rushton. Can J Chem Eng 1990, 68, 881. <https://doi.org/10.1002/cjce.5450680601>
  • Costes J., Couderc J.P.: Study by laser Doppler anemometry of the turbulent flow induced by a Rushton turbine in a stirred tank: Influence of the size of the units—I. Mean flow and turbulence. Chemical Engineering Science 1988, 43, 2751. <https://doi.org/10.1016/0009-2509(88)80018-6>
  • Platzer Bernd, Noll Günter: Modelling of the local distributions of velocity components and turbulence parameters in agitated vessels—method and results. Chem Eng Process Process Intensification 1988, 23, 13. <https://doi.org/10.1016/0255-2701(88)87011-9>
  • Placek Jiří, Tavlarides L. L., Smith G. W., Fořt Ivan: Turbulent flow in stirred tanks. Part II: A two‐scale model of turbulence. AIChE Journal 1986, 32, 1771. <https://doi.org/10.1002/aic.690321103>
  • Placek Jiri, Tavlarides L. L.: Turbulent flow in stirred tanks. Part I: Turbulent flow in the turbine impeller region. AIChE Journal 1985, 31, 1113. <https://doi.org/10.1002/aic.690310709>
  • KOLÁŘ V., FILIP P., CUREV A.G.: HYDRODYNAMICS OF A RADIALLY DISCHARGING IMPELLER STREAM IN AGITATED VESSELS. Chemical Engineering Communications 1984, 27, 313. <https://doi.org/10.1080/00986448408940508>