Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1980, 45, 3402-3407
https://doi.org/10.1135/cccc19803402

Kinetics of catalytic conversion of methanol at higher pressures

Jaroslav Bartoň and Vladimír Pour

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 160 00 Prague 6

Crossref Cited-by Linking

  • Ranjekar Apoorva M., Yadav Ganapati D.: Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope. Ind. Eng. Chem. Res. 2021, 60, 89. <https://doi.org/10.1021/acs.iecr.0c05041>
  • Kappis Konstantinos, Papavasiliou Joan, Avgouropoulos George: Methanol Reforming Processes for Fuel Cell Applications. Energies 2021, 14, 8442. <https://doi.org/10.3390/en14248442>
  • Bepari Sujoy, Kuila Debasish: Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review. International Journal of Hydrogen Energy 2020, 45, 18090. <https://doi.org/10.1016/j.ijhydene.2019.08.003>
  • Ma Zhao, Yang Wei-Wei, Li Ming-Jia, He Ya-Ling: High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions. Applied Energy 2018, 230, 769. <https://doi.org/10.1016/j.apenergy.2018.08.119>
  • Lytkina A. A., Orekhova N. V., Yaroslavtsev A. B.: Catalysts for the Steam Reforming and Electrochemical Oxidation of Methanol. Inorg Mater 2018, 54, 1315. <https://doi.org/10.1134/S0020168518130034>
  • Trincado Monica, Vogt Matthias: CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol. Physical Sciences Reviews 2018, 3. <https://doi.org/10.1515/psr-2017-0014>
  • Sá Sandra, Silva Hugo, Brandão Lúcia, Sousa José M., Mendes Adélio: Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental 2010, 99, 43. <https://doi.org/10.1016/j.apcatb.2010.06.015>
  • Tang Ying, Liu Ye, Zhu Ping, Xue Qingsong, Chen Li, Lu Yong: High‐performance HTLcs‐derived CuZnAl catalysts for hydrogen production via methanol steam reforming. AIChE Journal 2009, 55, 1217. <https://doi.org/10.1002/aic.11753>
  • Lebarbier V., Dagle R., Conant T., Vohs J. M., Datye A. K., Wang Y.: CO/FTIR Spectroscopic Characterization of Pd/ZnO/Al2O3 Catalysts for Methanol Steam Reforming. Catal Lett 2008, 122, 223. <https://doi.org/10.1007/s10562-008-9407-7>
  • Cao Weiqiang, Chen Guangwen, Li Shulian, Yuan Quan: Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst. Chemical Engineering Journal 2006, 119, 93. <https://doi.org/10.1016/j.cej.2006.03.008>
  • Pfeifer P., Kölbl A., Schubert K.: Kinetic investigations on methanol steam reforming on PdZn catalysts in microchannel reactors and model transfer into the pressure gap region. Catalysis Today 2005, 110, 76. <https://doi.org/10.1016/j.cattod.2005.09.014>
  • Purnama H, Ressler T, Jentoft R.E, Soerijanto H, Schlögl R, Schomäcker R: CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Applied Catalysis A: General 2004, 259, 83. <https://doi.org/10.1016/j.apcata.2003.09.013>
  • Lee Jin Kyung, Ko Jung Bong, Kim Dong Hyun: Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Applied Catalysis A: General 2004, 278, 25. <https://doi.org/10.1016/j.apcata.2004.09.022>
  • Agrell Johan, Germani Gabriele, Järås Sven G., Boutonnet Magali: Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Applied Catalysis A: General 2003, 242, 233. <https://doi.org/10.1016/S0926-860X(02)00517-3>
  • Agrell Johan, Boutonnet Magali, Fierro José L.G: Production of hydrogen from methanol over binary Cu/ZnO catalysts. Applied Catalysis A: General 2003, 253, 213. <https://doi.org/10.1016/S0926-860X(03)00521-0>
  • Agrell Johan, Birgersson Henrik, Boutonnet Magali: Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources 2002, 106, 249. <https://doi.org/10.1016/S0378-7753(01)01027-8>
  • Urban Peter M., Funke Anett, Müller Jens T., Himmen Michael, Docter Andreas: Catalytic processes in solid polymer electrolyte fuel cell systems. Applied Catalysis A: General 2001, 221, 459. <https://doi.org/10.1016/S0926-860X(01)00819-5>
  • Alejo L., Lago R., Peña M.A., Fierro J.L.G.: Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts. Applied Catalysis A: General 1997, 162, 281. <https://doi.org/10.1016/S0926-860X(97)00112-9>
  • Ma L., Jiang C., Adesina A.A., Trimm D.L., Wainwright M.S.: Simulation studies of autothermal reactor system for H2 production from methanol steam reforming. The Chemical Engineering Journal and the Biochemical Engineering Journal 1996, 62, 103. <https://doi.org/10.1016/0923-0467(95)03058-1>
  • Iwasa N., Masuda S., Ogawa N., Takezawa N.: Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction. Applied Catalysis A: General 1995, 125, 145. <https://doi.org/10.1016/0926-860X(95)00004-6>
  • Iwasa Nobuhiro, Kudo Satoshi, Takahashi Hiroyuki, Masuda Satoshi, Takezawa Nobutsune: Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 1993, 19, 211. <https://doi.org/10.1007/BF00771756>
  • Jiang C.J., Trimm D.L., Wainwright M.S., Cant N.W.: Kinetic study of steam reforming of methanol over copper-based catalysts. Applied Catalysis A: General 1993, 93, 245. <https://doi.org/10.1016/0926-860X(93)85197-W>
  • Santacesaria E., Carrá S.: Kinetics of catalytic steam reforming of methanol in a cstr reactor. Applied Catalysis 1983, 5, 345. <https://doi.org/10.1016/0166-9834(83)80162-6>