Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1987, 52, 913-928
https://doi.org/10.1135/cccc19870913

Simultaneous measurement of film thickness and wall shear stress in wavy flow of non-Newtonian liquids

Václav Sobolík, Ondřej Wein and Jan Čermák

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol

Crossref Cited-by Linking

  • Evdokimenko Ilia A., Blel Walid, Gentric Caroline, Vozhakov Ivan S., Alekseev Maksim V., Lukyanov Andrey A., Legrand Jack, Dechandol Emmanuel, Thobie Charlène, Si-Ahmed El-Khider, Lobanov Pavel D.: Experimental and numerical study of wall phenomena of confined bubble flow in a square channel. Chemical Engineering Science 2025, 301, 120681. <https://doi.org/10.1016/j.ces.2024.120681>
  • Thobie Charlène, Blel Walid, Hauser Jean-Luc, Pruvost Jérémy, Gentric Caroline: Different types of bubbly flows in a confined channel with the aim of limiting microalgae biofilm development - Part I: Hydrodynamic study. Chemical Engineering and Processing - Process Intensification 2022, 173, 108844. <https://doi.org/10.1016/j.cep.2022.108844>
  • Havlica Jaromir, Kramolis David, Huchet Florian: A revisit of the electro-diffusional theory for the wall shear stress measurement. International Journal of Heat and Mass Transfer 2021, 165, 120610. <https://doi.org/10.1016/j.ijheatmasstransfer.2020.120610>
  • Fadla Fawzi, Alizard Frederic, Keirsbulck Laurent, Robinet Jean-Christophe, Laval Jean-Philippe, Foucaut Jean-Marc, Chovet Camila, Lippert Marc: Investigation of the dynamics in separated turbulent flow. European Journal of Mechanics - B/Fluids 2019, 76, 190. <https://doi.org/10.1016/j.euromechflu.2019.01.006>
  • Park Hyun Jin, Tasaka Yuji, Murai Yuichi: Bubbly drag reduction investigated by time-resolved ultrasonic pulse echography for liquid films creeping inside a turbulent boundary layer. Experimental Thermal and Fluid Science 2019, 103, 66. <https://doi.org/10.1016/j.expthermflusci.2018.12.025>
  • Lamarche-Gagnon M.-É., Sobolík V., Vétel J.: Diagnostics of the fluctuating wall shear rate components using an uncalibrated three-segment electrodiffusion sensor. Exp Fluids 2018, 59. <https://doi.org/10.1007/s00348-018-2623-z>
  • Lamarche-Gagnon M.-É., Vétel J.: An inverse problem to assess the two-component unsteady wall shear rate. International Journal of Thermal Sciences 2018, 130, 278. <https://doi.org/10.1016/j.ijthermalsci.2018.04.022>
  • Absi Rafik, Azouani Rabah: Toward automatic cleaning of industrial equipment: pulsed flow-induced wall shear stress. Procedia CIRP 2018, 78, 359. <https://doi.org/10.1016/j.procir.2018.10.001>
  • Sodjavi Kodjovi, Montagné Brice, Bragança Pierre, Meslem Amina, Byrne Paul, Degouet Cédric, Sobolik Vaclav: PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets. Experimental Thermal and Fluid Science 2016, 70, 417. <https://doi.org/10.1016/j.expthermflusci.2015.10.004>
  • Fadla F., Graziani A., Kerherve F., Mathis R., Lippert M., Uystepruyst D., Keirsbulck L.: Electrochemical Measurements for Real-Time Stochastic Reconstruction of Large-Scale Dynamics of a Separated Flow. Journal of Fluids Engineering 2016, 138. <https://doi.org/10.1115/1.4034198>
  • Kristiawan Magdalena, Sodjavi Kodjovi, Montagné Brice, Meslem Amina, Sobolik Vaclav: Mass transfer and shear rate on a wall normal to an impinging circular jet. Chemical Engineering Science 2015, 132, 32. <https://doi.org/10.1016/j.ces.2015.03.070>
  • Böhm Lutz, Jankhah Sepideh, Tihon Jaroslav, Bérubé Pierre R., Kraume Matthias: Application of the Electrodiffusion Method to Measure Wall Shear Stress: Integrating Theory and Practice. Chem Eng & Technol 2014, 37, 938. <https://doi.org/10.1002/ceat.201400026>
  • Dib A., Martemianov S., Makhloufi L., Saidani B.: Calibration of electrodiffusion probes for turbulent flow measurements. Flow Measurement and Instrumentation 2014, 35, 76. <https://doi.org/10.1016/j.flowmeasinst.2013.11.008>
  • Tihon Jaroslav, Pěnkavová Věra, Vejražka Jiří: Wall shear stress induced by a large bubble rising in an inclined rectangular channel. International Journal of Multiphase Flow 2014, 67, 76. <https://doi.org/10.1016/j.ijmultiphaseflow.2014.07.005>
  • Tihon J., Vít Tomáš, Dančová Petra, Novotný Petr: Application of the electrodiffusion method for near-wall flow diagnostics. EPJ Web of Conferences 2014, 67, 02117. <https://doi.org/10.1051/epjconf/20146702117>
  • Berrich Emna, Aloui Fethi, Legrand Jack: Experimental validation and critical analysis of inverse method in mass transfer using electrochemical sensor. Experimental Thermal and Fluid Science 2013, 44, 253. <https://doi.org/10.1016/j.expthermflusci.2012.07.001>
  • Ait Mouheb Nassim, Montillet Agnès, Solliec Camille, Legentilhomme Patrick, Comiti Jacques: Diagnostic of flow disturbances in a cross-shaped micromixer using wall electrochemical probes. Experimental Thermal and Fluid Science 2013, 46, 20. <https://doi.org/10.1016/j.expthermflusci.2012.11.011>
  • Blel Walid, Legentilhomme Patrick, Bénézech Thierry, Fayolle Francine: Cleanabilty study of a Scraped Surface Heat Exchanger. Food and Bioproducts Processing 2013, 91, 95. <https://doi.org/10.1016/j.fbp.2012.10.002>
  • Fourrié Grégoire, Keirsbulck Laurent, Labraga Larbi: Wall shear stress characterization of a 3D bluff-body separated flow. Journal of Fluids and Structures 2013. <https://doi.org/10.1016/j.jfluidstructs.2013.05.014>
  • Böhm Lutz, Drews Anja, Kraume Matthias: Bubble induced shear stress in flat sheet membrane systems—Serial examination of single bubble experiments with the electrodiffusion method. Journal of Membrane Science 2013, 437, 131. <https://doi.org/10.1016/j.memsci.2013.02.036>
  • El Hassan M., Assoum H. H., Martinuzzi R., Sobolik V., Abed-Meraim K., Sakout A.: Experimental investigation of the wall shear stress in a circular impinging jet. Physics of Fluids 2013, 25. <https://doi.org/10.1063/1.4811172>
  • Berrich Emna, Aloui Fethi, Legrand Jack: Analysis of Inverse Method Applied on Sandwich Probes. Journal of Fluids Engineering 2013, 135. <https://doi.org/10.1115/1.4007888>
  • El Hassan Mouhammad, Assoum Hassan Hassan, Sobolik Vaclav, Vétel Jérôme, Abed-Meraim Kamel, Garon André, Sakout Anas: Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids 2012, 52, 1475. <https://doi.org/10.1007/s00348-012-1269-5>
  • Rehimi F., Aloui F.: Synchronized analysis of an unsteady laminar flow downstream of a circular cylinder centred between two parallel walls using PIV and mass transfer probes. Exp Fluids 2011, 51, 1. <https://doi.org/10.1007/s00348-010-1005-y>
  • Huchet F., Legentilhomme P., Legrand J., Montillet A., Comiti J.: Unsteady flows in milli- and microsystems: analysis of wall shear rate fluctuations. Experiments Fluids 2011, 51, 597. <https://doi.org/10.1007/s00348-011-1079-1>
  • Berrich Emna, Aloui Fethi, Legrand Jack: Inverse method for the dynamical analysis of wall shear rates using three-segment probes in parallel plate rheometer. Chem Eng Set 2011, 66, 3969. <https://doi.org/10.1016/j.ces.2011.05.026>
  • Kristiawan Magdalena, Jirout Tomáš, Sobolík Václav: Components of wall shear rate in wavy Taylor–Couette flow. Experimental Thermal and Fluid Science 2011, 35, 1304. <https://doi.org/10.1016/j.expthermflusci.2011.04.018>
  • Nakoryakov V. E., Timkin L. S., Gorelik R. S.: Experimental study of the Taylor bubbles shear stress in an upward flow in a vertical tube. Thermophys Aeromech 2011, 18, 281. <https://doi.org/10.1134/S0869864311020089>
  • Blel W., Legentilhomme P., Le Gentil-Lelièvre C., Faille C., Legrand J., Bénézech T.: Cleanability study of complex geometries: Interaction between B. cereus spores and the different flow eddies scales. Biochem Eng  J 2010, 49, 40. <https://doi.org/10.1016/j.bej.2009.11.009>
  • Blel W., Le Gentil-Lelièvre C., Bénézech T., Legrand J., Legentilhomme P.: Application of turbulent pulsating flows to the bacterial removal during a cleaning in place procedure. Part 1: Experimental analysis of wall shear stress in a cylindrical pipe. Food Engineering 2009, 90, 422. <https://doi.org/10.1016/j.jfoodeng.2008.07.008>
  • Zidouh H., Labraga L., William-Louis M.: Unsteady Wall Shear Stress in Transient Flow Using Electrochemical Method. Journal of Fluids Engineering 2009, 131. <https://doi.org/10.1115/1.3112387>
  • Blel W., Legentilhomme P., Legrand J., Bénézech T., Gentil‐Lelièvre C. Le: Hygienic design: Effect of hydrodynamics on the cleanability of a food processing line. AIChE Journal 2008, 54, 2553. <https://doi.org/10.1002/aic.11559>
  • Yataghene Mourad, Pruvost Jérémy, Fayolle Francine, Legrand Jack: CFD analysis of the flow pattern and local shear rate in a scraped surface heat exchanger. Chem Eng Process Process Intensification 2008, 47, 1550. <https://doi.org/10.1016/j.cep.2007.07.009>
  • Broniarz-Press Lubomira, Rozanska Sylwia: Determination of the flow and heat transfer characteristics in non-Newtonian media agitated using the electrochemical technique. International Journal Heat Mass Transfer 2008, 51, 910. <https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.003>
  • Aloui F., Rehimi F., Dumont E., Legrand J.: Inverse Method Applied for the Determination of the Wall Shear Rate in a Scraped Surface Heat Exchanger using the Electrochemical Technique. International Journal of Electrochemical Science 2008, 3, 676. <https://doi.org/10.1016/S1452-3981(23)15472-1>
  • Rehimi F., Legrand J., Aloui F.: Electrochemical method for precise determination of wall shear rate. Russ J Electrochem 2008, 44, 434. <https://doi.org/10.1134/S1023193508040095>
  • Tihon J., Serifi K., Argyriadi K., Bontozoglou V.: Solitary waves on inclined films: their characteristics and the effects on wall shear stress. Exp Fluids 2006, 41, 79. <https://doi.org/10.1007/s00348-006-0158-1>
  • Rehimi F., Aloui F., Ben Nasrallah S., Doubliez L., Legrand J.: Inverse method for electrodiffusional diagnostics of flows. International Journal Heat Mass Transfer 2006, 49, 1242. <https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.008>
  • Mabit Jérôme, Fayolle Francine, Legrand Jack: Shear rates investigation in a scraped surface heat exchanger. Chemical Engineering Science 2003, 58, 4667. <https://doi.org/10.1016/j.ces.2003.07.001>
  • Dumont Eric, Fayolle Francine, Legrand Jack: Electrodiffusional wall shear rate analysis in scraped surface heat exchanger. AIChE Journal 2000, 46, 1138. <https://doi.org/10.1002/aic.690460606>
  • Dumont Eric, Fayolle Francine, Legrand Jack: Flow regimes and wall shear rates determination within a scraped surface heat exchanger. Food Engineering 2000, 45, 195. <https://doi.org/10.1016/S0260-8774(00)00056-X>
  • Drahoš J., Tihon J., Sobolík V., Hasal P., Schreiber I., Marek M.: Analysis of wave modes in liquid film falling down a vertical oscillating plate. Chemical Engineering Science 1997, 52, 1163. <https://doi.org/10.1016/S0009-2509(96)00504-0>
  • Tihon J., Legrand J., Aouabed H., Legentilhomme P.: Dynamics of electrodiffusion probes in developing annular flows. Experiments in Fluids 1995, 20, 131. <https://doi.org/10.1007/BF00189303>
  • Tihon J., Legrand J., Aouabed H., Legentilhomme P.: Dynamics of electrodiffusion probes in developing annular flows. Experiments in Fluids 1995, 20, 131. <https://doi.org/10.1007/BF01061591>
  • Sobolik V., Tihon J., Pauli J., Onken U.: Sensitivity of three-segment electrodiffusion probes to eddy shedding. Experiments in Fluids 1994, 16, 368. <https://doi.org/10.1007/BF00202060>
  • Saasen A., Kurtzhals E., Tyvand P. A.: Dispersion of linear gravity waves on a viscoelastic fluid in an horizontal canal. Rheologica Acta 1993, 32, 36. <https://doi.org/10.1007/BF00396675>