Collect. Czech. Chem. Commun.
1994, 59, 2545-2561
https://doi.org/10.1135/cccc19942545
1,2,4,6-Substituted Pyridinium Derivatives-Synthesis and Properties
Jiří Urban and Jiří Volke
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic
Crossref Cited-by Linking
- Roychowdhury Pritam, Samanta Samya, Tan Hao, Powers David C.: N-Amino pyridinium salts in organic synthesis. Org. Chem. Front. 2023. <https://doi.org/10.1039/D3QO00190C>
- Dolganov A. V., Klimaeva L. A., Kostryukov S. G., Kozlov A. Sh., Yudina A. D., Tarasova O. V., Knyazev A. V.: Electrocatalytic Reduction of CO2 when Using N-Substituted Salts of 2,4,6-Triphenylpyridine. Russ. J. Phys. Chem. 2023, 97, 1657. <https://doi.org/10.1134/S0036024423080058>
- Knyazev A. V., Dolganov A. V., Klimaeva L. A., Kostryukov S. G., Kozlov A. Sh., Yudina A. D., Tarasova O. V.: Electrocatalytic Reduction of CO2 when Using N-Substituted Salts of 2,4,6-Triphenylpyridine. Russian Journal of Physical Chemistry 2023, 97, 1097. <https://doi.org/10.31857/S0044453723080058>
- Dolganov A.V., Chernyaeva O.Y., Kostryukov S.G., Balandina A.V., Solovyova E.O., Yudina A.D., Akhmatova A.A., Lyukshina Y.I.: Control of the substituent at the nitrogen atom in a 2,4,6-triphenylpyridinium perchlorates tunes the electrocatalytic hydrogen evolution mechanism and efficiency. International Journal of Hydrogen Energy 2020, 45, 501. <https://doi.org/10.1016/j.ijhydene.2019.10.175>
- Volke J., Dunsch L., Volkeová V., Petr A., Urban J.: Comproportionation in the reduction of pyridinium derivatives—a combined ESR and electrochemical study. Electrochimica Acta 1997, 42, 1771. <https://doi.org/10.1016/S0013-4686(96)00407-0>
- URBAN J., VOLKE J.: ChemInform Abstract: 1,2,4,6‐Substituted Pyridinium Derivatives ‐ Synthesis and Properties. ChemInform 1995, 26. <https://doi.org/10.1002/chin.199518150>