Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1998, 63, 1394-1408
https://doi.org/10.1135/cccc19981394

Comparing the Acidities of Microporous Aluminosilicate and Silico-Aluminophosphate Catalysts: A Combined Quantum Mechanics-Interatomic Potential Function Study

Joachim Sauer, Klaus-Peter Schröder and Volker Termath

Humboldt-Universitat, Institut für Chemie, Arbeitsgruppe Quantenchemie, Jagerstrasse 10-11, D-10117 Berlin, Germany

Crossref Cited-by Linking

  • Roy Ankit, Casella Andrew M., Senor David J., Jiang Weilin, Devanathan Ram: Molecular dynamics simulations of displacement cascades in LiAlO2 and LiAl5O8 ceramics. Sci Rep 2024, 14. <https://doi.org/10.1038/s41598-024-51222-4>
  • Roy Ankit, Senor David J., Casella Andrew M., Devanathan Ram: Molecular dynamics simulations of radiation response of LiAlO2 and LiAl5O8. Journal of Nuclear Materials 2023, 576, 154280. <https://doi.org/10.1016/j.jnucmat.2023.154280>
  • Jaegers Nicholas R., Iglesia Enrique: Theoretical Assessment of the Mechanism and Active Sites in Alkene Dimerization on Ni Monomers Grafted onto Aluminosilicates: (Ni–OH)+ Centers and C–C Coupling Mediated by Lewis Acid–Base Pairs. J. Am. Chem. Soc. 2023, 145, 6349. <https://doi.org/10.1021/jacs.2c13487>
  • Trachta Michal, Bludský Ota, Vaculík Jan, Bulánek Roman, Rubeš Miroslav: Investigation of Brønsted acidity in zeolites through adsorbates with diverse proton affinities. Sci Rep 2023, 13. <https://doi.org/10.1038/s41598-023-39667-5>
  • Trachta Michal, Bulánek Roman, Bludský Ota, Rubeš Miroslav: Brønsted acidity in zeolites measured by deprotonation energy. Sci Rep 2022, 12. <https://doi.org/10.1038/s41598-022-11354-x>
  • van Vreeswijk S. H., Monai M., Oord R., Schmidt J. E., Vogt E. T. C., Poplawsky J. D., Weckhuysen B. M.: Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction. Catal. Sci. Technol. 2022, 12, 1220. <https://doi.org/10.1039/D1CY01938D>
  • Berger Fabian, Rybicki Marcin, Sauer Joachim: Adsorption and cracking of propane by zeolites of different pore size. Journal of Catalysis 2021, 395, 117. <https://doi.org/10.1016/j.jcat.2020.12.008>
  • Shi Zhichen, Neurock Matthew, Bhan Aditya: Methanol-to-Olefins Catalysis on HSSZ-13 and HSAPO-34 and Its Relationship to Acid Strength. ACS Catal. 2021, 11, 1222. <https://doi.org/10.1021/acscatal.0c04011>
  • Suthaharan Sivanujan, Iyngaran Poobalasuntharam, Kuganathan Navaratnarajah: Simulation-Based Defect Engineering in “α-Spodumene”. ChemEngineering 2021, 5, 57. <https://doi.org/10.3390/chemengineering5030057>
  • Fischer Michael: Proton Acidity and Proton Mobility in ECR‐40, a Silicoaluminophosphate that Violates Löwenstein's Rule. Chemistry A European J 2019, 25, 13579. <https://doi.org/10.1002/chem.201902945>
  • Barbosa Junior G.J., Sousa A.M., de Freitas S.M., Santos R.D.S., Rezende M.V.dos S.: Investigation of Europium dopant in the orthophosphate KMPO4 (M = Ba and Sr) compounds. Journal of Physics and Chemistry of Solids 2019, 130, 282. <https://doi.org/10.1016/j.jpcs.2019.02.024>
  • Rojo-Gama Daniel, Signorile Matteo, Bonino Francesca, Bordiga Silvia, Olsbye Unni, Lillerud Karl Petter, Beato Pablo, Svelle Stian: Structure–deactivation relationships in zeolites during the methanol–to-hydrocarbons reaction: Complementary assessments of the coke content. Journal of Catalysis 2017, 351, 33. <https://doi.org/10.1016/j.jcat.2017.04.015>
  • Boronat Mercedes, Corma Avelino: Factors Controlling the Acidity of Zeolites. Catal Lett 2015, 145, 162. <https://doi.org/10.1007/s10562-014-1438-7>
  • Yadav Rekha, Singh Arvind Kumar, Sakthivel Ayyamperumal: Mesoporous silico-aluminophosphates derived from microporous precursors as promising catalyst for hydroisomerization. Catalysis Today 2015, 245, 155. <https://doi.org/10.1016/j.cattod.2014.09.026>
  • Westgård Erichsen Marius, De Wispelaere Kristof, Hemelsoet Karen, Moors Samuel L.C., Deconinck Thomas, Waroquier Michel, Svelle Stian, Van Speybroeck Veronique, Olsbye Unni: How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol. Journal of Catalysis 2015, 328, 186. <https://doi.org/10.1016/j.jcat.2015.01.013>
  • Teketel Shewangizaw, Lundegaard Lars F., Skistad Wegard, Chavan Sachin M., Olsbye Unni, Lillerud Karl Petter, Beato Pablo, Svelle Stian: Morphology-induced shape selectivity in zeolite catalysis. Journal of Catalysis 2015, 327, 22. <https://doi.org/10.1016/j.jcat.2015.03.013>
  • Piccini GiovanniMaria, Alessio Maristella, Sauer Joachim, Zhi Yuchun, Liu Yuanshuai, Kolvenbach Robin, Jentys Andreas, Lercher Johannes A.: Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites. Ab initio Theory and Experiment for H-Chabazite. J. Phys. Chem. C 2015, 119, 6128. <https://doi.org/10.1021/acs.jpcc.5b01739>
  • Halasz Istvan, Moden Bjorn, Petushkov Anton, Liang Jian-Jie, Agarwal Mukesh: Delicate Distinction between OH Groups on Proton-Exchanged H-Chabazite and H-SAPO-34 Molecular Sieves. J. Phys. Chem. C 2015, 119, 24046. <https://doi.org/10.1021/acs.jpcc.5b09247>
  • Rybicki Marcin, Sauer Joachim: Acidity of two-dimensional zeolites. Phys. Chem. Chem. Phys. 2015, 17, 27873. <https://doi.org/10.1039/C5CP05088J>
  • Yadav Rekha, Sakthivel Ayyamperumal: Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes. Applied Catalysis A: General 2014, 481, 143. <https://doi.org/10.1016/j.apcata.2014.05.010>
  • Pongsai Suchaya: Combination of the Metropolis Monte Carlo and Lattice Statics method for geometry optimization of H‐(Al)‐ZSM‐5. J Comput Chem 2010, 31, 1979. <https://doi.org/10.1002/jcc.21482>
  • Vener Mikhail V., Rozanska Xavier, Sauer Joachim: Protonation of water clusters in the cavities of acidic zeolites: (H2O)n·H-chabazite, n = 1–4. Phys. Chem. Chem. Phys. 2009, 11, 1702. <https://doi.org/10.1039/b817905k>
  • Deroche I., Maurin G., Llewellyn P.L., Castro M., Wright P.A.: Silicon distribution in SAPO materials: A computational study of STA-7 Combined to 29Si MAS NMR spectroscopy. Microporous and Mesoporous Materials 2008, 107, 268. <https://doi.org/10.1016/j.micromeso.2007.03.021>
  • Jentys A., Mukti R.R., Tanaka H., Lercher J.A.: Energetic and entropic contributions controlling the sorption of benzene in zeolites. Microporous and Mesoporous Materials 2006, 90, 284. <https://doi.org/10.1016/j.micromeso.2005.11.031>
  • Malavasi G., Pedone A., Menziani M. C.: Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Molecular Simulation 2006, 32, 1045. <https://doi.org/10.1080/08927020600932793>
  • Linati Laura, Lusvardi Gigliola, Malavasi Gianluca, Menabue Ledi, Menziani M. Cristina, Mustarelli Piercarlo, Segre Ulderico: Qualitative and Quantitative Structure−Property Relationships Analysis of Multicomponent Potential Bioglasses. J. Phys. Chem. B 2005, 109, 4989. <https://doi.org/10.1021/jp046631n>
  • Lusvardi Gigliola, Malavasi Gianluca, Menabue Ledi, Menziani M. Cristina, Pedone Alfonso, Segre Ulderico: A Computational Tool for the Prediction of Crystalline Phases Obtained from Controlled Crystallization of Glasses. J. Phys. Chem. B 2005, 109, 21586. <https://doi.org/10.1021/jp0546857>
  • Pastore H.O., Coluccia S., Marchese L.: POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts. Annu. Rev. Mater. Res. 2005, 35, 351. <https://doi.org/10.1146/annurev.matsci.35.103103.120732>
  • Elanany Mohamed, Koyama Michihisa, Kubo Momoji, Selvam Parasuraman, Miyamoto Akira: Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials 2004, 71, 51. <https://doi.org/10.1016/j.micromeso.2004.03.018>
  • Clark Louis A., Sierka Marek, Sauer Joachim: Computational Elucidation of the Transition State Shape Selectivity Phenomenon. J. Am. Chem. Soc. 2004, 126, 936. <https://doi.org/10.1021/ja0381712>
  • Corà Furio, Alfredsson Maria, Barker Carolyn M, Bell Rob G, Foster Martin D, Saadoune Iman, Simperler Alexandra, Catlow C.Richard A: Modeling the framework stability and catalytic activity of pure and transition metal-doped zeotypes. Journal of Solid State Chemistry 2003, 176, 496. <https://doi.org/10.1016/S0022-4596(03)00275-5>
  • Clark Louis A., Sierka Marek, Sauer Joachim: Stable Mechanistically-Relevant Aromatic-Based Carbenium Ions in Zeolite Catalysts. J. Am. Chem. Soc. 2003, 125, 2136. <https://doi.org/10.1021/ja0283302>
  • Aufdembrink Brent A., Dee Douglas P., McDaniel Paula L., Mebrahtu Thomas, Slager Terry L.: Spectroscopic Characterization of Acidity in Chabazite. J. Phys. Chem. B 2003, 107, 10025. <https://doi.org/10.1021/jp027163p>
  • Haw James F.: Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys. 2002, 4, 5431. <https://doi.org/10.1039/B206483A>
  • Sierka Marek, Sauer Joachim: Proton Mobility in Chabazite, Faujasite, and ZSM-5 Zeolite Catalysts. Comparison Based on ab Initio Calculations. J. Phys. Chem. B 2001, 105, 1603. <https://doi.org/10.1021/jp004081x>
  • Sauer Joachim, Sierka Marek: Combining quantum mechanics and interatomic potential functions inab initio studies of extended systems. J Comput Chem 2000, 21, 1470. <https://doi.org/10.1002/1096-987X(200012)21:16<1470::AID-JCC5>3.0.CO;2-L>
  • Sauer Joachim, Sierka Marek: Combining quantum mechanics and interatomic potential functions inab initio studies of extended systems. J. Comput. Chem. 2000, 21, 1470. <https://doi.org/10.1002/1096-987X(200012)21:16<1470::AID-JCC5>3.0.CO;2-L>
  • Henson Neil J., Hay P. Jeffrey, Redondo Antonio: Computational Studies of Cobalt-Substituted Aluminophosphates. J. Phys. Chem. A 2000, 104, 2423. <https://doi.org/10.1021/jp991798f>
  • Sierka Marek, Sauer Joachim: Finding transition structures in extended systems: A strategy based on a combined quantum mechanics–empirical valence bond approach. The Journal of Chemical Physics 2000, 112, 6983. <https://doi.org/10.1063/1.481296>