Collect. Czech. Chem. Commun. 2000, 65, 99-105
https://doi.org/10.1135/cccc20000099

A Covalently Bound Template in the Regioselective Synthesis of Bis(tetraazacrown)s

Martin Chadim, Miloš Buděšínský, Jana Hodačová and Jiří Závada*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

References

1a. De Clercq E., Yamamoto N., Pauwels R., Balzarini J., Witvrouw M., De Vreese K., Debyser Z., Rosenwieth B., Peichl P., Datema R., Thornton D., Skerlj R. T., Gaul F., Padmanabhan S., Bridger G. J., Fricker S., Henson G. W., Abrams M. J.: Antimicrob. Agents Chemother. 1994, 38, 668. <https://doi.org/10.1128/AAC.38.4.668>
1b. De Clercq E.: Pure Appl. Chem. 1998, 70, 567. <https://doi.org/10.1351/pac199870030567>
1c. De Clercq E.: Collect. Czech. Chem. Commun. 1998, 63, 449. <https://doi.org/10.1135/cccc19980449>
2a. Bridger G. J., Skerlj R. T., Thornton D., Padmanabhan S., Martellucci S. A., Henson G. W., Abrams M. J., Yamamoto N., De Vreese K., Pauwels R., De Clercq E.: J. Med. Chem. 1995, 38, 366. <https://doi.org/10.1021/jm00002a019>
2b. Joao H. C., De Vreese K., Pauwels R., De Clercq E., Henson G. W., Bridger G. J.: J. Med. Chem. 1995, 38, 3865. <https://doi.org/10.1021/jm00019a017>
3. Hodačová J., Závada J., Junk P. C.: Collect. Czech. Chem. Commun. 1999, 64, 1827. <https://doi.org/10.1135/cccc19991827>
4a. Stetter H.: Chem. Ber. 1953, 86, 69. <https://doi.org/10.1002/cber.19530860113>
4b. Jażwiński J., Koliński R. A.: Tetrahedron Lett. 1981, 22, 1711. <https://doi.org/10.1016/S0040-4039(01)90419-8>
4c. Jażwiński J., Koliński R. A.: Bull. Pol. Acad. Sci. Chem. 1988, 36, 215.
5a. Hervé G., Bernard H., Le Bris N., Yaouanc J.-J., Handel H., Toupet L.: Tetrahedron Lett. 1998, 39, 6861. <https://doi.org/10.1016/S0040-4039(98)01497-X>
5b. Hervé G., Bernard H., Le Bris N., Le Baccon M., Yaouanc J.-J., Handel H.: Tetrahedron Lett. 1999, 40, 2517. <https://doi.org/10.1016/S0040-4039(99)00260-9>
6. The bis(aminal) 6b was isolated. M.p. 121–123 °C (hexane). For C19H28N4 (312.5) calculated 73.04% C, 9.03% H, 17.93% N; found 73.13% C, 9.04% H, 17.65% N. FAB MS, m/z (rel.%): 311 (100), 313 (85). 1H NMR (CDCl3): 1.10 m, 1 H (CH2); 1.37 s, 3 H (CH3); 1.45 s, 3 H (CH3); 1.86 m, 1 H (CH2); 2.19–2.48 m, 4 H (CH2); 2.56–2.90 m, 6 H (CH2); 3.20–3.32 m, 1 H (CH2); 3.27 d, 1 H, J = 15 (ArCH2); 3.51 d, 1 H, J = 15 (ArCH2); 3.84 m, 1 H (CH2); 4.15 d, 1 H, J = 15 (ArCH2); 4.59 d, 1 H, J = 15 (ArCH2); 6.98–7.17 m, 4 H (ArH). 13C NMR (CDCl3): 11.85, 11.96, 18.55, 45.26, 45.95, 47.59, 50.17, 51.26, 52.73, 55.42, 59.85, 76.07, 79.17, 127.34, 127.40, 128.59, 130.55, 138.85, 140.83.
7a. Joung M. J., Chin J.: J. Am. Chem. Soc. 1995, 117, 10577.
7b. Williams N. H., Takasaki B., Wall M., Chin J.: Acc. Chem. Res. 1999, 32, 485. <https://doi.org/10.1021/ar9500877>
8. The proton as well as carbon signals were broadened probably due to a medium rate of conformational exchange of alicyclic systems. Sharper lines were obtained in 13C NMR spectra when measured at a higher temperature (50 °C). Structure assignment of proton signals is based on characteristic chemical shifts, multiplicities and intensities of individual signals. Carbon signals were assigned using 1H–13C correlated HMQC spectra.