Collect. Czech. Chem. Commun. 2000, 65, 1777-1790
https://doi.org/10.1135/cccc20001777

Substituent Effects on the Base-Catalysed Hydrolysis of Phenyl Esters of para-Substituted Benzoic Acids

Ingrid Bauerová* and Miroslav Ludwig

Department of Organic Chemistry, Faculty of Chemical Technology, University of Pardubice, Čs. Legií 565, CZ-532 10 Pardubice, Czech Republic

References

1. Hammett L. P.: Chem. Rev. (Washington, D. C.) 1935, 17, 125. <https://doi.org/10.1021/cr60056a010>
2. Hammett L. P.: Physical Organic Chemistry, 1st ed. McGraw–Hill, New York 1940.
3. Pytela O.: Collect. Czech. Chem. Commun. 1996, 61, 704. <https://doi.org/10.1135/cccc19960704>
4. Pytela O.: Collect. Czech. Chem. Commun. 1995, 60, 1502. <https://doi.org/10.1135/cccc19951502>
5. Pytela O.: Collect. Czech. Chem. Commun. 1996, 61, 1191. <https://doi.org/10.1135/cccc19961191>
6. Pekkarinen L., Tommila E.: Acta Chem. Scand. 1959, 13, 1019. <https://doi.org/10.3891/acta.chem.scand.13-1019>
7. Khan M. N., Olagbemiro T. O.: J. Org. Chem. 1982, 47, 3695. <https://doi.org/10.1021/jo00140a022>
8. Khan M. N., Olagbemiro T. O., Umar U. Z.: Tetrahedron 1983, 39, 811. <https://doi.org/10.1016/S0040-4020(01)91858-7>
9. Khan M. N., Fatope I. L., Zubair M. O.: J. Chem. Soc., Perkin Trans. 2 1986, 655. <https://doi.org/10.1039/p29860000655>
10. Anvia F., Bowden K.: J. Chem. Soc., Perkin Trans. 2 1990, 1805. <https://doi.org/10.1039/p29900001805>
11. Guthrie R. D.: Pure Appl. Chem. 1989, 61, 23. <https://doi.org/10.1351/pac198961010023>
12. Guthrie R. D., Jencks W. P.: Acc. Chem. Res. 1991, 22, 343. <https://doi.org/10.1021/ar00166a001>
13. Bender M. L., Thomas R. J.: J. Am. Chem. Soc. 1961, 83, 4189. <https://doi.org/10.1021/ja01481a022>
14. Bunton C. A., Spatcher D. N.: J. Chem. Soc. 1956, 1079.
15. Stefanidis D., Cho S., Dhe-Paganon S., Jencks W. P.: J. Am. Chem. Soc. 1993, 115, 1650. <https://doi.org/10.1021/ja00058a006>
16. Um I.-H., Min J.-S., Jeon J.-S., Kwon D.-S.: Bull. Korean Chem. Soc. 1995, 16, 570.
17. Um I.-H., Oh S.-J., Kwon D.-S.: Bull. Korean Chem. Soc. 1996, 17, 802.
18. Ba-Saif S. A., Luthra A. K., Williams A.: J. Am. Chem. Soc. 1987, 109, 6362. <https://doi.org/10.1021/ja00255a021>
19. Ba-Saif S. A., Luthra A. K., Williams A.: J. Am. Chem. Soc. 1989, 111, 2647. <https://doi.org/10.1021/ja00189a045>
20. Ba-Saif S. A., Colthurst M., Waring M. A., Williams A.: J. Chem. Soc., Perkin Trans. 2 1991, 1901. <https://doi.org/10.1039/p29910001901>
21. Chaw Z. S., Fischer A., Happer D. A. R.: J. Chem. Soc. B 1971, 1818. <https://doi.org/10.1039/j29710001818>
22. Einhorn A., Hollandt F.: Justus Liebigs Ann. Chem. 1898, 301, 95. <https://doi.org/10.1002/jlac.18983010111>
23. Kochi J. K.: J. Org. Chem. 1961, 26, 932. <https://doi.org/10.1021/jo01062a071>
24. Crich D., Hwang J.-T.: J. Org. Chem. 1998, 63, 2565.
25. Birckenbach L., Meisenheimer K.: Chem. Ber. 1936, 69, 723. <https://doi.org/10.1002/cber.19360690417>
26. Exner O., Boček K.: Collect. Czech. Chem. Commun. 1973, 38, 50. <https://doi.org/10.1135/cccc19730050>
27. Williams D. L., Ronzio A. R.: J. Org. Chem. 1953, 18, 489. <https://doi.org/10.1021/jo01133a003>
28. Dell´’Erba C., Sancassan F., Leandri G., Novi M., Petrilllo G.: Gazz. Chim. Ital. 1989, 119, 643.
29. Raiford L. C., Taft R., Lankelma H. P.: J. Am. Chem. Soc. 1924, 46, 2054.
30. Ogata Y., Sawaki Y., Furuta M.: J. Org. Chem. 1974, 39, 216. <https://doi.org/10.1021/jo00916a021>
31. Bretschneider H., Klötzer W.: Monatsh. Chem. 1956, 87, 47. <https://doi.org/10.1007/BF00903588>
32. Hashimoto S., Furukawa I.: Bull. Chem. Soc. Jpn. 1981, 54, 2227. <https://doi.org/10.1246/bcsj.54.2227>
33. Iselin B., Rittel W., Sieber P., Schwyzer R.: Helv. Chim. Acta 1957, 40, 373. <https://doi.org/10.1002/hlca.19570400216>
34. Singh A., Andrews L. J., Keefer R. M.: J. Am. Chem. Soc. 1962, 84, 1179. <https://doi.org/10.1021/ja00866a024>
35. Titherley A. W., Stubbs L.: J. Chem. Soc. 1914, 105, 304. <https://doi.org/10.1039/ct9140500299>
36. Kirsch J. F., Clewell W., Simon A.: J. Org. Chem. 1968, 33, 127. <https://doi.org/10.1021/jo01265a023>
37. Taft R. W., Price E., Fox I. R., Lewis I. C., Andersen K. K., Davis G. T.: J. Am. Chem. Soc. 1963, 85, 3146. <https://doi.org/10.1021/ja00903a022>
38. Rabilloud G., Sillion B., de Gaudemaris G.: Bull. Soc. Chim. Fr. 1966, 926.
39. Pouw J. M., Zuman P.: J. Org. Chem. 1976, 41, 1614. <https://doi.org/10.1021/jo00871a029>
40. Pytela O.: Collect. Czech. Chem Commun. 1997, 62, 645. <https://doi.org/10.1135/cccc19970645>
41. Exner O.: Correlation Analysis of Chemical Data. Plenum Press, SNTL, Prague 1988.
42. Hojo M., Utaka M., Yoshida Z.: Tetrahedron 1971, 27, 2713. <https://doi.org/10.1016/S0040-4020(01)98062-7>
43. Buncel E., Um I. H., Hoz S.: J. Am. Chem. Soc. 1989, 111, 971. <https://doi.org/10.1021/ja00185a029>
44. Nummert V., Piirsalu M.: Org. Reactiv. 1997, 31, 102.
45. Colthurst M. J., Williams A.: J. Chem. Soc., Perkin. Trans. 2 1997, 1493. <https://doi.org/10.1039/a700686a>
46. Euranto E. K. in: The Chemistry of Carboxylic Acids and Esters (S. Patai, Ed.), p. 505. Interscience Publ., New York 1969.
47. Wold S., Esbensen K., Geladi P.: Chemom. Intell. Lab. Syst. 1987, 2, 37. <https://doi.org/10.1016/0169-7439(87)80084-9>
48. Pytela O., Liška J.: Collect. Czech. Chem. Commun. 1994, 59, 2005. <https://doi.org/10.1135/cccc19942005>