Collect. Czech. Chem. Commun. 2000, 65, 455-476
https://doi.org/10.1135/cccc20000455

Franck-Condon Dominated Chemistry. Formation and Dissociations of the Dimethylhydroxysulfuranyl Radical

František Tureček

Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, U.S.A.

References

1. Tyndall G. S., Ravishankara A. R.: Int. J. Chem. Kinet. 1991, 23, 483. <https://doi.org/10.1002/kin.550230604>
2. Turnipseed A. A., Ravishankara A. R. in: Oceans, Atmosphere and Climate (G. Restelli and G. Angeletti, Eds), p. 185. Kluwer, Dordrecht 1993.
3. Andrae M. O. in: The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (J. N. Galloway et al., Eds), p. 5. Reiel 1985.
4. Eisele F. L., Bradshaw J. D.: Anal. Chem. 1993, 65, 927A. <https://doi.org/10.1021/ac00069a001>
5. Hynes A. J., Wine P. H., Semmes D. H.: J. Phys. Chem. 1986, 90, 4148. <https://doi.org/10.1021/j100408a062>
6. Stickel R. E., Zhao Z., Wine P. H.: Chem. Phys. Lett. 1993, 212, 312. <https://doi.org/10.1016/0009-2614(93)89331-B>
7. Hynes A. J., Stoker R. B., Pounds A. J., McKay T., Bradshaw J. D., Nicovich J. M., Wine P. H.: J. Phys. Chem. 1995, 99, 16967. <https://doi.org/10.1021/j100046a024>
8. Tureček F.: J. Phys. Chem. 1994, 98, 3701. <https://doi.org/10.1021/j100065a027>
9. Wine P. H., Kreutter N. M., Gump C. A., Ravishankara A. R.: J. Phys. Chem. 1981, 85, 2660. <https://doi.org/10.1021/j150618a019>
10. Barone S. B., Turnipseed A. A., Ravishankara A. R.: J. Phys. Chem. 1996, 100, 14694. <https://doi.org/10.1021/jp960866k>
11. Turnipseed A. A., Barone S. B., Ravishankara A. R.: J. Phys. Chem. 1996, 100, 14703. <https://doi.org/10.1021/jp960867c>
12. Barnes I., Bastain V., Becker K. H.: Int. J. Chem. Kinet. 1988, 20, 415. <https://doi.org/10.1002/kin.550200602>
13. Barnes I., Becker K. H., Patroescu I.: Geophys. Res. Lett. 1994, 21, 2389. <https://doi.org/10.1029/94GL02499>
14. Gu M., Tureček F.: J. Am. Chem. Soc. 1992, 114, 7146. <https://doi.org/10.1021/ja00044a029>
15. McKee M. L.: J. Phys. Chem. 1993, 97, 10971. <https://doi.org/10.1021/j100144a013>
16. Merenyi G., Lind J., Engman L.: J. Phys. Chem. 1996, 100, 8875. <https://doi.org/10.1021/jp953613k>
17. Bonifacic M., Mockel H., Bahnemann D., Asmus K.-D.: J. Chem. Soc., Perkin Trans. 2 1975, 675. <https://doi.org/10.1039/p29750000675>
18. Chaudri S. A., Gobl M., Freyholy Asmus K.-D.: J. Am. Chem. Soc. 1984, 106, 5988. <https://doi.org/10.1021/ja00332a040>
19. Schoneich C., Bobrowski K.: J. Am. Chem. Soc. 1993, 115, 6538. <https://doi.org/10.1021/ja00068a010>
20. Gilbert B. C., Hodgeman D. K. C., Norman R. O. C.: J. Chem. Soc., Perkin Trans. 2 1973, 1748. <https://doi.org/10.1039/p29730001748>
21. Janata E., Veltwisch D., Asmus K.-D.: Radiat. Phys. Chem. 1980, 16, 43. <https://doi.org/10.1016/0146-5724(80)90112-0>
22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh (PA) 1998.
23. Parr R. G., Yang W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York 1989.
24a. Becke A. D.: J. Chem. Phys. 1993, 98, 1372. <https://doi.org/10.1063/1.464304>
24b. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
25. Stephens P. J., Devlin F. J., Chablowski C. F., Frisch M. J.: J. Phys. Chem. 1994, 98, 11623. <https://doi.org/10.1021/j100096a001>
26. Frisch M. J., Pople J. A., Binkley J. S.: J. Chem. Phys. 1984, 80, 3265. <https://doi.org/10.1063/1.447079>
27. Bauschlicher C. W., Partridge H.: J. Chem. Phys. 1995, 103, 1788. <https://doi.org/10.1063/1.469752>
28. Tureček F.: J. Phys. Chem. A 1998, 102, 4703. <https://doi.org/10.1021/jp980940u>
29. Møller C., Plesset M. S.: Phys. Rev. 1934, 46, 618. <https://doi.org/10.1103/PhysRev.46.618>
30. Rauhut G., Pulay R.: J. Phys. Chem. 1995, 99, 3093. <https://doi.org/10.1021/j100010a019>
31. Finley J. W., Stephens P. J.: J. Mol. Struct. (THEOCHEM) 1995, 227, 357.
32. Wong M. W.: Chem. Phys. Lett. 1996, 256, 391. <https://doi.org/10.1016/0009-2614(96)00483-6>
33. Scott A. P., Radom L.: J. Phys. Chem. 1996, 100, 16502. <https://doi.org/10.1021/jp960976r>
34. Tureček F., Cramer C. J.: J. Am. Chem. Soc. 1995, 117, 12243. <https://doi.org/10.1021/ja00154a026>
35. McClurg R. B., Flagan R. C., Goddard W. A., III: J. Chem. Phys. 1997, 106, 6675. <https://doi.org/10.1063/1.473664>
36. East A. L. L., Radom L.: J. Chem. Phys. 1997, 106, 6655. <https://doi.org/10.1063/1.473958>
37. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
38. Pople J. A., Head-Gordon M., Raghavachari K.: J. Chem. Phys. 1987, 87, 5968. <https://doi.org/10.1063/1.453520>
39. Curtiss L. A., Raghavachari K., Pople J. A.: J. Chem. Phys. 1993, 98, 1293. <https://doi.org/10.1063/1.464297>
40. Curtiss L. A., Raghavachari K., Redfern P. C., Pople J. A.: J. Chem. Phys. 1997, 106, 1063. <https://doi.org/10.1063/1.473182>
41. Raghavachari K., Stefanov B. B., Curtiss L. A.: J. Chem. Phys. 1997, 106, 6764. <https://doi.org/10.1063/1.473659>
42. Smith B. J., Radom L.: J. Phys. Chem. 1995, 99, 6468. <https://doi.org/10.1021/j100017a028>
43. Curtiss L. A., Raghavachari K., Pople J. A.: J. Chem. Phys. 1995, 103, 4192. <https://doi.org/10.1063/1.470658>
44. Tureček F., Polášek M., Frank A. J., Sadílek M.: J. Am. Chem. Soc. 2000, 122, in press.
45. Mayer I.: Adv. Quantum Chem. 1980, 12, 189. <https://doi.org/10.1016/S0065-3276(08)60317-2>
46. Schlegel H. B.: J. Chem. Phys. 1986, 84, 4530. <https://doi.org/10.1063/1.450026>
47. McWeeny R., Diercksen G.: J. Chem. Phys. 1968, 49, 4852. <https://doi.org/10.1063/1.1669970>
48. Parkinson C. J., Mayer P. M., Radom L.: J. Chem. Soc., Perkin Trans. 2 1999, 2305. <https://doi.org/10.1039/a905476f>
49. Sadílek M., Tureček F.: J. Phys. Chem. 1996, 100, 9610. <https://doi.org/10.1021/jp960172b>
50. Sadílek M., Tureček F.: J. Phys. Chem. 1996, 100, 15027. <https://doi.org/10.1021/jp9608640>
51. Nguyen V. Q., Sadílek M., Frank A. J., Ferrier J. G., Tureček F.: J. Phys. Chem. A 1997, 101, 3789. <https://doi.org/10.1021/jp964077e>
52. Sadílek M., Tureček F.: Int. J. Mass Spectrom. 1999, 185/186/187, 639. <https://doi.org/10.1016/S1387-3806(98)14147-7>
53. Mallard W. G., Lindstrom P. J. (Eds): NIST Chemistry Webbook, NIST Standard Reference Database, No. 69. NIST, Gaithersburg (MD) 1998; http://webbook.nist.gov/chemistry.
54. The enthalpy of formation of OOH in ref.53 (2.092 kJ mol–1) is a typographical error.
55. Aston J. G., Fritz J. J.: Thermodynamics and Statistical Thermodynamics. Wiley, New York 1959.
56. Dunbar R. C.: J. Chem. Phys. 1989, 90, 7369. <https://doi.org/10.1063/1.456216>
57. Foresman J. B., Fead-Gordon M., Pople J. A., Frisch M. J.: J. Phys. Chem. 1992, 96, 135. <https://doi.org/10.1021/j100180a030>