Collect. Czech. Chem. Commun.
     2001, 66, 676-684
  https://doi.org/10.1135/cccc20010676
  
Effects of pH, Temperature and Various Anions on Thiourea Disappearance in Aqueous Media with Titanium Dioxide Under UV-Irradiation. Photomineralization Kinetics
Abdelghani Boussaouda,*, Gerard Ducb, Jean Pierre Meilleb and Michelle Petit-Ramelb
a Laboratoire de Chimie-Physique, Faculté des Sciences, Agadir, Morocco
b Laboratoire d'Instrumentation et de Chimie Analytique II, Université Claude Bernard, Lyon I, France
References
1.  R. W.: J. Chem. Soc., Faraday Trans. 1 1984, 80, 457.
<https://doi.org/10.1039/f19848000457>
2.  K., Yamamoto Y., Tanaka H., Itaya A.: Bull. Chem. Soc. Jpn. 1985, 58, 2023.
<https://doi.org/10.1246/bcsj.58.2023>
3.  U., Gray K. A., Kamat P. V.: J. Phys. Chem. 1994, 98, 6343.
<https://doi.org/10.1021/j100076a019>
4.  M., Satoh Y., Osa T.: J. Electroanal. Chem. Interfacial Electrochem. 1981, 126, 277.
<https://doi.org/10.1016/S0022-0728(81)80435-4>
5.  H., Serpone N.: J. Phys. Chem. 1988, 92, 5726.
<https://doi.org/10.1021/j100331a036>
6.  H., Serpone N., Pelizzetti E., Minero C., Fox M. A., Draper R. B.: Langmuir 1989, 5, 250.
<https://doi.org/10.1021/la00085a048>
7.  M. A., Dulay M. T.: Chem. Rev. 1993, 93, 341.
<https://doi.org/10.1021/cr00017a016>
8.  E., Garcia J., Domenech X., Peral J.: Oxid. Commun. 1997, 20(4), 546.
9.  A. P., Huang C. P.: Wat. Res. 1991, 25(1), 1273.
<https://doi.org/10.1016/0043-1354(91)90067-Z>
10.  A. J.: J. Phys. Chem. 1982, 86, 172.
<https://doi.org/10.1021/j100391a008>
11.  A. P., Huang C. P.: Wat. Sci. Technol. 1989, 21, 455.
<https://doi.org/10.2166/wst.1989.0248>
12. Schindler P. W., Stumm W. in: Aquatic Surface Chemistry: Chemical Processes at the Particle–Water Interface (W. Stumm, Ed.), p. 83. Wiley, New York 1987.
13. Cunningham J., Al-Sayyed G., Srijanarai S. in: Aquatic and Surface Photochemistry (G. R. Heltz, R. G. Zepp and D. G. Crosby, Eds), p. 317. Lewis Publishers, Boca Raton 1994.
14.  J. D.: J. Photochem. Photobiol., A 1981, 34, 549.
<https://doi.org/10.1111/j.1751-1097.1981.tb09402.x>
15.  R., Serpone N.: J. Photochem. Photobiol. A 1995, 89, 163.
<https://doi.org/10.1016/1010-6030(94)04020-3>
16.  B., Okugawa Y., Nishimoto S., Kagia T.: J. Phys. Chem. 1987, 91, 3550.
<https://doi.org/10.1021/j100297a017>
17.  G. A.: Chem. Rev. 1965, 65, 177.
<https://doi.org/10.1021/cr60234a002>
18.  R. W.: Sol. Energy 1987, 38, 405.
<https://doi.org/10.1016/0038-092X(87)90021-1>
19.  M., Low G. K.-C., Matthews R. W.: J. Phys. Chem. 1990, 94, 6820.
<https://doi.org/10.1021/j100380a051>
20.  R. W.: J. Catal. 1988, 111, 264.
<https://doi.org/10.1016/0021-9517(88)90085-1>
21.  J. F., Meir K.: J. Phys. Chem. 1984, 88, 5903.
<https://doi.org/10.1021/j150668a032>
22.  A.: Radiat. Phys. Chem. 1980, 15, 151.
<https://doi.org/10.1016/0146-5724(80)90125-9>
23.  G. K.-C., McEvoy S. R., Matthews R. W.: Environ. Sci. Technol. 1991, 25, 460.
<https://doi.org/10.1021/es00015a013>


