Collect. Czech. Chem. Commun.
2001, 66, 833-854
https://doi.org/10.1135/cccc20010833
Parameters of the Bender Equation of State for Chloro Derivatives of Methane and Chlorobenzene
Ivan Cibulka*, Lubomír Hnědkovský and Květoslav Růžička
Department of Physical Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic
References
1. Cryogenics 1975, 15, 667.
< E.: https://doi.org/10.1016/0011-2275(75)90100-9>
2. Cryogenics 1977, 17, 591.
< A. S., Singh A.: https://doi.org/10.1016/0011-2275(77)90112-6>
3. Fluid Phase Equilib. 2001, 180, 27.
< I. , Kováčiková J., Hnědkovský L., Novák J. P.: https://doi.org/10.1016/S0378-3812(00)00494-5>
4. Collect. Czech. Chem. Commun. 1999, 64, 1087.
< J. P., Malijevský A., Cibulka I.: https://doi.org/10.1135/cccc19991087>
5. AIChE J. 1974, 20, 263.
< C.: https://doi.org/10.1002/aic.690200209>
6. Int. J. Thermophys. 1994, 15, 461.
< L. A.: https://doi.org/10.1007/BF01563708>
7. Fluid Phase Equilib. 2000, 174, 13.
< J. H.: https://doi.org/10.1016/S0378-3812(00)00414-3>
8. Bull. Soc. Chim. Fr. 1909, 339.
P. A.:
9. G. B. Dep. Sci. Ind. Res., Food Invest. Board, Spec. Rep. 1924, 19, 1.
D. N.:
10. Ind. Eng. Chem. 1939, 31, 878.
< H. G., Benning A. F., Mathewson W. F.: https://doi.org/10.1021/ie50355a020>
11. J. Chem. Eng. Data 1964, 9, 45.
< C. C., McKetta J. J.: https://doi.org/10.1021/je60020a014>
12. AIChE J. 1967, 13, 231.
< K. W., Storvick T. S.: https://doi.org/10.1002/aic.690130209>
13. J. Chem. Thermodyn. 1981, 13, 1001.
< H., Hall K. R., Holste J. C., Eubank P. T.: https://doi.org/10.1016/0021-9614(81)90001-X>
14. J. Chem. Eng. Data 1978, 23, 193.
< A., Iwasaki H.: https://doi.org/10.1021/je60078a006>
15. Ind. Eng. Chem., Process Des. Dev. 1983, 22, 313.
< J.: https://doi.org/10.1021/i200021a023>
16. TRC Tables 23-10-2-(10.011)-d. C-Cl-H. Chloroalkanes, C1 and C2. TRC Thermodynamic Tables-Nonhydrocarbons, p. 7240. Thermodynamics Research Center, The Texas A&M University System, College Station (TX) 1973.
17. TRC Tables 23-10-2-(1.013)-d. C-Cl-H. Monochloroalkanes, C1 to C5. TRC Thermodynamic Tables-Nonhydrocarbons, p. 7040. Thermodynamics Research Center, The Texas A&M University System, College Station (TX) 1981.
18. Trans. Faraday Soc. 1952, 48, 101.
< S. D., Pearse J. F.: https://doi.org/10.1039/tf9524800101>
19. Nature 1958, 181, 1004.
C. G., Whytlaw-Gray R., Bottomley G. A.:
20. Proc. R. Soc. London, Ser. A 1960, 255, 427.
< A. R., Lambert J. D., Petter P. J., Spoel H.: https://doi.org/10.1098/rspa.1960.0076>
21. Aust. J. Chem. 1967, 20, 1789.
< G. A., Spurling T. H.: https://doi.org/10.1071/CH9671789>
22. Ber. Bunsen–Ges. Phys. Chem. 1969, 73, 42.
R. N., Schaefer K.:
23. AIChE J. 1985, 31, 849.
< P. T., Kreglewski A., Hall K. R., Holste J. C., Mansoorian H.: https://doi.org/10.1002/aic.690310522>
24. CDATA Database of Physical and Transport Properties of Pure Fluids. Department of Physical Chemistry, Institute of Chemical Technology, Prague and FIZ CHEMIE GmbH, Berlin 1993.
25. J. Chem. Thermodyn. 1979, 11, 205.
< R. P., Kudchadker A. P.: https://doi.org/10.1016/0021-9614(79)90144-7>
26. J. Chem. Thermodyn. 1975, 7, 271.
< R. K., Richard A. J.: https://doi.org/10.1016/0021-9614(75)90065-8>
27. Chem. Lett. 1982, 971.
< A., Takahashi S.: https://doi.org/10.1246/cl.1982.971>
28. Int. J. Thermophys. 1985, 6, 331.
< A. J., Woolf L. A.: https://doi.org/10.1007/BF00500267>
29. J. Chem. Thermodyn. 1991, 23, 231.
< V. G., Caceres A. M., Arsuaga F. J., Nunez Delgado J.: https://doi.org/10.1016/S0021-9614(05)80181-8>
30. Proc. R. Soc. London, Ser. A 1953, 219, 490.
< P. G. T., Hanks P. A., Lambert J. D.: https://doi.org/10.1098/rspa.1953.0162>
31. An. Quim. Fis. 1958, 54, 661.
A., Diaz Pena M.:
32. Z. Phys. Chem. (Leipzig) 1968, 238, 321.
M.:
33. J. Chem. Eng. Data 1986, 31, 462.
< R. P.: https://doi.org/10.1021/je00046a022>
34. J. Chem. Thermodyn. 1998, 30, 1235.
< C. J., Johnson P. W.: https://doi.org/10.1006/jcht.1998.0389>
35. J. Chem. Soc. 1961, 5511.
< A. D., Raab R. E.: https://doi.org/10.1039/jr9610005511>
36. J. Chem. Thermodyn. 1984, 16, 391.
< A. J., Woolf L. A.: https://doi.org/10.1016/0021-9614(84)90178-2>
37. Ber. Bunsen–Ges. Phys. Chem. 1987, 91, 525.
N. V., Bhat S. N., Kohler F.:
38. Can. J. Chem. 1968, 46, 575.
< A. N., Chatterjee R. M.: https://doi.org/10.1139/v68-095>
39. Zh. Fiz. Khim. 1960, 34, 2596.
S. D., Kolysko L. E.:
40. Zh. Fiz. Khim. 1961, 35, 2613.
S. D., Kolysko L. E.:
41. Zh. Fiz. Khim. 1965, 39, 447.
S. D., Belousova Z. S., Kolysko L. E.:
42. Bull. Soc. Chim. Fr. 1971, 2866.
R., Jose J., Clechet P.:
43. Fluid Phase Equilib. 1989, 45, 287.
< J. A., Vera J. H.: https://doi.org/10.1016/0378-3812(89)80263-8>
44. J. Chem. Soc., Faraday Trans. 1998, 94, 1263.
< J. A., Hutchings D. J., Lancaster N. M., Wormald C. J.: https://doi.org/10.1039/a708603b>
45. Trans. Faraday Soc. 1962, 58, 2095.
< G. A., Whalley E.: https://doi.org/10.1039/tf9625802095>
46. Phys. Fluids 1965, 8, 8.
< H. W., Hastings J. R., Weissman S.: https://doi.org/10.1063/1.1761104>
47. J. Chem. Phys. 1969, 50, 2559.
< F. I.: https://doi.org/10.1063/1.1671415>
48. Can. J. Chem. 1973, 51, 1183.
< K. S., Burkat R., Richard A. J.: https://doi.org/10.1139/v73-178>
49. J. Chem. Eng. Data 1976, 21, 432.
< M. S., Winnick J.: https://doi.org/10.1021/je60071a012>
50. Holzapfel K., Goetze G., Demiriz A. M., Kohler F.: Int. DATA Ser., Sel. Data Mixtures, Ser. A 1987(1), 30.
51. J. Chem. Thermodyn. 1987, 19, 1251.
< A., Miller J. F., Zollweg J. A., Streett W. B.: https://doi.org/10.1016/0021-9614(87)90002-4>
52. J. Chem. Soc. 1891, 903.
< S.: https://doi.org/10.1039/ct8915900903>
53. J. Chem. Soc. 1891, 37.
< S.: https://doi.org/10.1039/ct8915900037>
54. Sci. Proc. R. Dublin Soc. 1910, 12, 374.
S.:
55. Can. J. Chem. 1969, 47, 3893.
< A. N., Chatterjee R. M.: https://doi.org/10.1139/v69-646>
56. Trans. Faraday Soc. 1955, 51, 593.
< P. G., McGlashan M. L.: https://doi.org/10.1039/tf9555100593>
57. An. Quim. Fis. 1964, 60, 229.
A., Diaz Pena M., Burriel Lluna J. A.:
58. Indian J. Chem. 1970, 8, 815.
D. V. S., Gupta V. K., Lark B. S.:
59. J. Chem. Thermodyn. 1996, 28, 245.
< C. J., Lancaster N. M.: https://doi.org/10.1006/jcht.1996.0024>
60. Zh. Fiz. Khim. 1976, 50, 1901. (Data were taken from the deposited document VINITI No. 1196-76).
T. S., Kafarov T. E., Kerimov A. M.:
61. Z. Phys. Chem. (Leipzig) 1982, 263, 519.
E., Bich E., Opel G., Schulze P., Vogel E.:
62. J. Phys. Chem. 1939, 43, 207.
< R. E., Loeffler O. H.: https://doi.org/10.1021/j150389a003>
63. J. Am. Chem. Soc. 1939, 61, 2515.
< R. E., Loeffler O. M.: https://doi.org/10.1021/ja01878a076>
64. Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekhn. Mat. Nauk 1973(3) 128.
T. S., Kafarov T. A., Kerimov A. M.:
65. J. Chem. Thermodyn. 1982, 14, 577.
< T., Teranishi H.: https://doi.org/10.1016/0021-9614(82)90072-6>
66. J. Chem. Thermodyn. 1983, 15, 567.
< H., Fukunaga T., Tanaka Y., Kubota H., Makita T.: https://doi.org/10.1016/0021-9614(83)90056-3>
67. Abdullaev F. G., Dzhabiev Yu. A.: Izv. Vyssh. Uchebn. Zaved., Neft Gaz 1984, 27(8), 58.
68. J. Chem. Eng. Data 1997, 42, 1261.
< A. J., Back P. J., Woolf L. A.: https://doi.org/10.1021/je970166o>
69. TRC Tables 23-10-(33.1001) to 23-10-2-(33.1001)-d. C-Cl to C-Cl-H. Chlorobenzenes, C6. TRC Thermodynamic Tables-Nonhydrocarbons, p. 7330. Thermodynamics Research Center, The Texas A&M University System, College Station (TX) 1990.
70. Collect. Czech. Chem. Commun. 2000, 65, 1464.
< A., Hujo T.: https://doi.org/10.1135/cccc20001464>
71. J. Chem. Eng. Data 2001, 46, 2.
< I., Takagi T., Růžička K.: https://doi.org/10.1021/je0002383>