Collect. Czech. Chem. Commun. 2001, 66, 1038-1046
https://doi.org/10.1135/cccc20011038

Are There Two Different Geometric Isomers of the O=C=N=C=O Cation?

František Tureček

Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, U.S.A.

References

1. Yang S. S., Chen G., Ma S., Cooks R. G., Gozzo F. C., Eberlin M. N.: J. Mass Spectrom. 1995, 30, 807. <https://doi.org/10.1002/jms.1190300605>
2. Carvalho M. C., Juliano V. F., Kascheres C., Eberlin M. N.: J. Chem. Soc., Perkin Trans. 2 1997, 2347. <https://doi.org/10.1039/a702436c>
3. Sparrapan R., Mendes M. A., Eberlin M. N.: J. Mass Spectrom. 2000, 35, 189. <https://doi.org/10.1002/(SICI)1096-9888(200002)35:2<189::AID-JMS929>3.0.CO;2-I>
4. Miller S. A., Luo H., Jiang X., Rohrs H. W., Cooks R. G.: Int. J. Mass Spectrom. Ion Processes 1997, 160, 83. <https://doi.org/10.1016/S0168-1176(96)04502-8>
5. Chen G., Denault J. W., Kasthurikrishnan N., Cooks R. G.: J. Mass Spectrom. 1999, 34, 198. <https://doi.org/10.1002/(SICI)1096-9888(199903)34:3<198::AID-JMS784>3.0.CO;2-T>
6. Shaffer S. A., Tureček F., Cerny R. L.: J. Am. Chem. Soc. 1993, 115, 12117. <https://doi.org/10.1021/ja00078a058>
7. Polášek M., Tureček F.: Int. J. Mass Spectrom. 2000, 196, 101. <https://doi.org/10.1016/S1387-3806(99)00139-6>
8. Pykko P., Runeberg N.: J. Mol. Struct. (THEOCHEM) 1991, 234, 279. <https://doi.org/10.1016/0166-1280(91)89018-V>
9. Bernhardi I., Drews T., Seppelt K.: Angew. Chem., Int. Ed. Engl. 1999, 38, 2232. <https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15<2232::AID-ANIE2232>3.0.CO;2-2>
10. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C. M., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh (PA) 1998.
11a. Becke A. D.: J. Chem. Phys. 1993, 98, 1372, 5648.
11b. Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.: J. Phys. Chem. 1994, 98, 11623. <https://doi.org/10.1021/j100096a001>
12. Møller C., Plesset M. S.: Phys. Rev. 1934, 46, 618. <https://doi.org/10.1103/PhysRev.46.618>
13. Čížek J.: Adv. Chem. Phys. 1969, 14, 35.
14. Purvis G. D., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910. <https://doi.org/10.1063/1.443164>
15a. Rauhut G., Pulay R.: J. Phys. Chem. 1995, 99, 3093. <https://doi.org/10.1021/j100010a019>
15b. Finley J. W., Stephens P. J.: J. Mol. Struct. (THEOCHEM) 1995, 227, 357.
15c. Wong M. W.: Chem. Phys. Lett. 1996, 256, 391. <https://doi.org/10.1016/0009-2614(96)00483-6>
15d. Scott A. P., Radom L.: J. Phys. Chem. 1996, 100, 16502. <https://doi.org/10.1021/jp960976r>
16. Curtiss L. A., Raghavachari K., Pople J. A.: J. Chem. Phys. 1993, 98, 1293. <https://doi.org/10.1063/1.464297>
17. Mallard W. G., Lindstrom P. J. (Eds): NIST Chemistry Webbook, NIST Standard Reference Database, No. 69. NIST, Gaithersburg (MD) 1998; http://webbook.nist.gov/chemistry.
18. Dyke J. M., Jonathan N., Lewis A. E., Mills J. D., Morris A.: Mol. Phys. 1983, 50, 77. <https://doi.org/10.1080/00268978300102181>
19. Lias S. G., Bartmess J. E., Liebman J. F., Holmes J. L., Levin R. D., Mallard W. G.: J. Phys. Chem. Ref. Data 1988, Suppl. No. 1, 17.
20. Ruscic B., Berkowitz J.: J. Chem. Phys. 1994, 100, 4498. <https://doi.org/10.1063/1.466281>