Collect. Czech. Chem. Commun.
2002, 67, 1479-1485
https://doi.org/10.1135/cccc20021479
Convenient Preparation of 2-Phenylethyl 3,3-Difluoro-2-methylpropionate
Takashi Yamazakia,*, Tatsuro Ichigeb and Tomoya Kitazumeb
a Department of Applied Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
b Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
References
1. Org. Lett. 2001, 3, 2915.
< T., Ichige T., Takei S., Kawashita S., Kitazume T., Kubota T.: https://doi.org/10.1021/ol016401g>
2a. J. Fluorine Chem. 2000, 105, 31.
< I. I., Kolomeitsev A. A., Kolycheva M. I., Kukhar V. P.: https://doi.org/10.1016/S0022-1139(00)00258-X>
2b. Biosci., Biotechnol., Biochem. 1993, 57, 1024.
< M., Suzuki M., Matsumoto K.: https://doi.org/10.1271/bbb.57.1024>
2c. Tetrahedron 1988, 44, 5375.
< T., Kawada K., Ishihara S., Uchida N., Shiratori O., Higaki J., Hirata M.: https://doi.org/10.1016/S0040-4020(01)86044-0>
2d. Heterocycles 1987, 26, 633.
K., Kobori T., Tsunemoto D., Kondo K.:
3. J. Org. Chem. 1989, 54, 5630.
< T., Ohnogi T., Miyauchi H., Yamazaki T., Watanabe S.: https://doi.org/10.1021/jo00284a047>
4. Synthesis 1982, 297.
< J. P., Sauvetre R., Normant J. F.: https://doi.org/10.1055/s-1982-29787>
5. J. Fluorine Chem. 1992, 56, 189.
< C. L., Burgess J. P., Everett T. S., Purrington S. T.: https://doi.org/10.1016/S0022-1139(00)81101-X>
6. J. Org. Chem. 1984, 49, 3702.
< T. S., Purrington S. T., Bumgardner C. L.: https://doi.org/10.1021/jo00194a006>
7. Tetrahedron Lett. 1999, 40, 8435.
< C., Paganelli S., Sbrogiò F., Zarantonello C.: https://doi.org/10.1016/S0040-4039(99)01754-2>
8a. There is only one dehydrofluorination example utilizing lithium 2,2,6,6-tetra- methylpiperidide (LTMP) in the [3,3] sigmatropic rearrangement of 2-(allyloxy)- 3,3-difluoroacrylate. Tetrahedron 1995, 51, 5011.
< G.-Q., Cao Z.-Y., Cai W.-L.: https://doi.org/10.1016/0040-4020(95)98698-H>
8b. In the case of the elimination of HF from α-perfluoroalkylated esters, see, J. Chem. Soc., Perkin Trans. 1 1977, 1365.
< D., Wakselman C., Dorme R.: https://doi.org/10.1039/p19770001365>
9a. Bull. Chem. Soc. Jpn. 1991, 64, 1542.
< K., Takeyama Y., Oshima K., Utimoto K.: https://doi.org/10.1246/bcsj.64.1542>
9b. Tetrahedron Lett. 1993, 34, 2169.
< K., Nagai T., Kobayashi Y.: https://doi.org/10.1016/S0040-4039(00)60373-8>
10a. Our semiempirical (AM1) calculation disclosed that the LUMO energy level of ethyl ester analogue of 2 was 0.75 eV lower than the corresponding nonfluorinated ethyl methacrylate. J. Org. Chem. 1994, 59, 5100.
< T., Hiraoka S., Kitazume T.: https://doi.org/10.1021/jo00096a071>
10b. See also the following article: Russ. Chem. Bull. 1999, 48, 647.
< Yu. A., Kolomiets A. F., Fokin A. V.: https://doi.org/10.1007/BF02496239>
11. Ab initio (HF/6-311±G**) calculation of acrylaldehyde and its 3,3-difluorinated analogue indicated that the electrostatic environment around the terminal carbon at position 3 was extraordinarily different. The former possessed the negative charge of –0.257 but the introduction of two fluorine atoms in the latter changed it to the positive charge of 0.956. If this is the case, it is quite natural to consider that C3 of the latter should be more sensitive to nucleophilic species.
12. Tetrahedron Lett. 1986, 27, 3173.
< T., Shibata Y., Suzuki Y.: https://doi.org/10.1016/S0040-4039(00)84746-2>
13. For the similar example, see, J. Org. Chem. 1987, 52, 290.
< J., Molines H., Wakselman C.: https://doi.org/10.1021/jo00378a028>