Collect. Czech. Chem. Commun. 2002, 67, 843-868
https://doi.org/10.1135/cccc20020843

Phosphorus Insertion Into Borane Clusters. A Review

Bohumil Štíbr

Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic; Research Centre for New Inorganic Compounds and Advanced Materials, University of Pardubice

References

1. Shapiro I., Good C. D., Williams R. E.: J. Am. Chem. Soc. 1962, 84, 3837. <https://doi.org/10.1021/ja00879a010>
2a. Williams R. E.: Inorg. Chem. 1971, 10, 210. <https://doi.org/10.1021/ic50095a046>
2b. Wade K.: J. Chem. Soc., Chem. Commun. 1971, 792. <https://doi.org/10.1039/c29710000792>
2c. Rudolph R. W., Pretzer W. R.: Inorg. Chem. 1972, 11, 1974. <https://doi.org/10.1021/ic50114a058>
2d. Wade K.: Adv. Inorg. Chem. Radiochem. 1976, 18, 1. <https://doi.org/10.1016/S0065-2792(08)60027-8>
2e. Rudolph R. W.: Acc. Chem. Res. 1976, 446. <https://doi.org/10.1021/ar50108a004>
2f. Wade K., O’Neill M. E.: Comp. Organomet. Chem. 1987, 1, 25.
2g. Wade K., O’Neill M. E. in: Metal Interactions with Boron Hydrides (R. N. Grimes, Ed.), Chap. 1, p. 1. Plenum, New York 1982.
2h. Williams R. E. in: Electron Deficient Boron and Carbon Clusters (G. A. Olah, K. Wade and R. E. Williams, Eds), p. 11. Wiley, New York 1991.
2i. Williams R. E.: Chem. Rev. (Washington, D. C.) 1992, 92, 177. <https://doi.org/10.1021/cr00010a001>
3a. Elian M., Hoffman R.: Inorg. Chem. 1975, 14, 1058. <https://doi.org/10.1021/ic50147a021>
3b. Hoffman R.: Science (Washington, D. C.) 1981, 211, 995. <https://doi.org/10.1126/science.211.4486.995>
3c. Hoffman R.: Angew. Chem., Int. Ed. Engl. 1982, 21, 711. <https://doi.org/10.1002/anie.198207113>
4a. Wegner P. A. in: Boron Hydride Chemistry (E. L. Muetterties, Ed.), Vol. 12, p. 431. Academic, New York 1975, and references therein.
4b. Dunks G. B., Hawthorne M. F. in: Boron Hydride Chemistry (E. L. Muetterties Ed.), p. 383. Academic, New York 1973.
4c. Todd L. J. in: Comprehensive Organometallic Chemistry (G. Wilkinson, F. G. A. Stone and E. Abel, Eds), Part I, Chap. 7, p. 257. Pergamon, Oxford 1982.
4d. Saxena A. K., Maguire J. A., Hosmane N. S.: Chem. Rev. (Washington, D. C.) 1997, 97, 2421. <https://doi.org/10.1021/cr9703257>
4e. Beal H., Gaines D. F.: Collect. Czech. Chem. Commun. 1999, 64, 747. <https://doi.org/10.1135/cccc19990747>
5. Glass J. A., Jr., Whelan T. A., Spencer J. T.: Organometallics 1991, 10, 1148. <https://doi.org/10.1021/om00050a056>
6. Burdett J., Eisenstein O.: J. Am. Chem. Soc. 1995, 117, 11939. <https://doi.org/10.1021/ja00153a016>
7. Schleyer P. v. R., Subramanian G., Dransfeld A.: J. Am. Chem. Soc. 1996, 118, 9988. <https://doi.org/10.1021/ja962036q>
8. Nöth H.: Chem. Rev. (Washington, D. C.) 1995, 343.
9. Haubold W., Keller W., Sawitzki G.: Angew. Chem., Int. Ed. Engl. 1988, 27, 925. <https://doi.org/10.1002/anie.198809251>
10. Solouki B., Bock H., Haubold W., Keller W.: Angew. Chem., Int. Ed. Engl. 1990, 29, 1044. <https://doi.org/10.1002/anie.199010441>
11. McKee M. L.: J. Phys. Chem. 1991, 95, 9273. <https://doi.org/10.1021/j100176a045>
12. Jemmis E. D., Subramanian G.: J. Phys. Chem. 1994, 98, 9222. <https://doi.org/10.1021/j100088a022>
13. Keller W., Sneddon L. G., Einholz W., Gemmler A.: Chem. Ber./Recl. 1992, 125, 2343. <https://doi.org/10.1002/cber.19921251102>
14. Keller W., Sawitzki G., Haubold W.: Inorg. Chem. 2000, 39, 1282. <https://doi.org/10.1021/ic990112v>
15. Keller W., Haubold W., Wrackmeyer B.: Magn. Reson. Chem. 1999, 37, 545. <https://doi.org/10.1002/(SICI)1097-458X(199908)37:8<545::AID-MRC496>3.0.CO;2-E>
16. Lorenzen V., Preetz W., Keller W., Haubold W.: Z. Naturforsch., B: Chem. Sci. 1999, 54, 1229. <https://doi.org/10.1515/znb-1999-1003>
17. Burg A. B., Heinen H.: Inorg. Chem. 1968, 7, 1021. <https://doi.org/10.1021/ic50063a037>
18. Mishra I. B., Burg A. B.: Inorg. Chem. 1972, 11, 664. <https://doi.org/10.1021/ic50109a059>
19. Coons D. E., Gaines D. F.: Inorg. Chem. 1987, 26, 1985. <https://doi.org/10.1021/ic00259a034>
20. Goodreau B. H., Ostander R. L., Spencer J. T.: Inorg. Chem. 1991, 30, 2066. <https://doi.org/10.1021/ic00009a024>
21. Miller R. W., Donaghy K. J., Spencer J. T.: Organometallics 1991, 10, 1161. <https://doi.org/10.1021/om00050a057>
22. Hosmane N. S., Lu K.-J., Cowley A. H., Mardones M. A.: Inorg. Chem. 1991, 30, 1325. <https://doi.org/10.1021/ic00006a030>
23. Keller W., Barnum B. A., Bausch J. W., Sneddon L. G.: Inorg. Chem. 1993, 32, 5058. <https://doi.org/10.1021/ic00075a019>
24. Holub J., Bakardjiev M., Štíbr B., Hnyk D., Tok O. L., Wrackmeyer B.: Inorg. Chem. 2002, 41, 2817. <https://doi.org/10.1021/ic020047g>
25. Hong D. W., Rathmill S. E., Kadlecek D. E., Sneddon L. G.: Inorg. Chem. 2000, 39, 4996. <https://doi.org/10.1021/ic000728g>
26. Holub J., Jelínek T., Hnyk D., Plzák Z., Císařová I., Bakadjiev M., Štíbr B.: Chem. Eur. J. 2001, 7, 1546. <https://doi.org/10.1002/1521-3765(20010401)7:7<1546::AID-CHEM1546>3.0.CO;2-K>
27. Jelínek T., Hnyk D., Holub J., Štíbr B.: Inorg. Chem. 2001, 40, 4512. <https://doi.org/10.1021/ic001318v>
28. Little J. L., Kester J. G., Huffman J. C., Todd L. J.: Inorg. Chem. 1989, 28, 1087. <https://doi.org/10.1021/ic00305a018>
29. Little J. L., Whitesell M. A., Chapman R. W., Kester J. G., Huffman J. C., Todd L. J.: Inorg. Chem. 1993, 32, 3369. <https://doi.org/10.1021/ic00067a030>
30. Jemmis E. D., Kiran B., Coffey D., Jr.: Chem. Ber./Recl. 1997, 130, 1147. <https://doi.org/10.1002/cber.19971300818>
31. Little J. L., Wong A. C.: J. Am. Chem. Soc. 1971, 93, 522. <https://doi.org/10.1021/ja00731a040>
32. Little J. L.: Inorg. Chem. 1976, 15, 114. <https://doi.org/10.1021/ic50155a024>
33. Shedlow A. M., Sneddon L. G.: Inorg. Chem. 1998, 37, 5269. <https://doi.org/10.1021/ic980445c>
34. Getman T. D., Deng H.-B., Hsu L.-Y., Shore S. G.: Inorg. Chem. 1989, 28, 3612. <https://doi.org/10.1021/ic00317a046>
35. Štíbr B., Holub J., Bakardjiev M., Hnyk D., Tok O. L., Milius W., Wrackmeyer B.: Eur. J. Inorg. Chem., in press.
36. Holub J., Ormsby D. L., Kennedy J. D., Greatrex R., Štíbr B.: Inorg. Chem. Commun. 2000, 3, 178. <https://doi.org/10.1016/S1387-7003(00)00039-3>
37. Ormsby D. L., Greatrex R., Štíbr B., Kennedy J. D.: J. Organomet. Chem. 2000, 614, 61. <https://doi.org/10.1016/S0022-328X(00)00613-6>
38. Little J. L., Moran J. T., Todd L. J.: J. Am. Chem. Soc. 1967, 89, 5495. <https://doi.org/10.1021/ja00997a058>
39. Todd L. J., Little J. L., Silverstein H. T.: Inorg. Chem. 1969, 8, 1698. <https://doi.org/10.1021/ic50078a027>
40. Wong H. S., Lipscomb W. N.: Inorg. Chem. 1975, 14, 1350. <https://doi.org/10.1021/ic50148a030>
41. Todd L. J., Paul I. C., Little J. L., Welcker P. S., Peterson C. R. T.: J. Am. Chem. Soc. 1968, 90, 4489. <https://doi.org/10.1021/ja01018a071>
42. Stornhoff B. N., Infante A. J.: J. Organomet. Chem. 1975, 84, 291. <https://doi.org/10.1016/S0022-328X(00)91392-5>
43. Wright W. F., Huffman J. C., Todd L. J.: J. Organomet. Chem. 1978, 148, 7. <https://doi.org/10.1016/S0022-328X(00)90944-6>
44a. Dunks G. B., Wiersema R. J., Hawthorne M. F.: J. Chem. Soc., Chem. Commun. 1972, 899. <https://doi.org/10.1039/c39720000899>
44b. Dunks G. B., Wiersema R. J., Hawthorne M. F.: J. Am. Chem. Soc. 1973, 95, 3174. <https://doi.org/10.1021/ja00791a018>
45a. Little J. L., Welcker P. S., Loy N. J., Todd L. J.: Inorg. Chem. 1970, 9, 63. <https://doi.org/10.1021/ic50083a012>
45b. Yamamoto T., Todd L. J.: J. Organomet. Chem. 1974, 67, 75. <https://doi.org/10.1016/S0022-328X(00)93686-6>