Collect. Czech. Chem. Commun.
2002, 67, 1325-1334
https://doi.org/10.1135/cccc20021325
Synthesis of α-Fluoro-β-lactones and Their Thermal Conversion to 1-Fluoroalkenes
Rogelio Ocampoa, William R. Dolbier, Jr.b,* and Fabio Zuluagac
a Departamento de Química, Universidad de Caldas, Manizales, Colombia
b Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, U.S.A.
c Departamento de Química, Universidad del Valle, Cali, Colombia
References
1a. Synthesis 1993, 441.
< A., Pons J.-M.: https://doi.org/10.1055/s-1993-25878>
1b. Mulzer J. in: Comprehensive Organic Synthesis (B. M. Trost and I. Flemming, Eds), Vol. 6, p. 323. Pergamon, Oxford 1991.
1c. Searles S. in: Comprehensive Heterocyclic Chemistry (A. R. Katrizky and C. W. Rees, Eds), Vol. 7, Part 5, p. 363. Pergamon, Oxford 1984.
2a. J. Fluorine Chem. 1973/74, 3, 63.
< D. C., Solomon L., Krespan C. G.: https://doi.org/10.1016/S0022-1139(00)82862-6>
2b. J. Org. Chem. 1968, 33, 816.
< D. C., Krespan C. G.: https://doi.org/10.1021/jo01266a069>
3. Acta Crystallogr., Sect.C: Cryst. Struct. Commun. 1997, 53, 1923.
< K., Dolbier W. R., Jr., Ocampo R.: https://doi.org/10.1107/S0108270197010020>
4a. J. Org. Chem. 1995, 60, 5378.
< W. R., Jr., Ocampo R., Paredes R.: https://doi.org/10.1021/jo00122a007>
4b. J. Fluorine Chem. 1998, 88, 41.
< R., Dolbier W. R., Jr., Paredes R.: https://doi.org/10.1016/S0022-1139(97)00134-6>
5. J. Org. Chem. 1997, 62, 109.
< R., Dolbier W. R., Jr., Bartberger M. D., Paredes R.: https://doi.org/10.1021/jo961648q>
6. J. Am. Chem. Soc. 1997, 119, 816.
< I., Lecea B., Arrieta A., Cossío F. P.: https://doi.org/10.1021/ja962810+>
7. Smart B. E. in: Organofluorine Chemistry: Principles and Commercial Applications (R. E. Banks, B. E. Smart and J. C. Tatlow, Eds), p. 57. Plenum Press, New York 1994.
8a. J. Org. Chem. 1998, 63, 1205.
< M. J., Neschadimenko V., Ro B. O., Yuan C. S., Borchardt R. T., Wnuk S. F.: https://doi.org/10.1021/jo971741u>
8b. J. Med. Chem. 1996, 39, 2347.
< S. M., Yuan C. S., Borchardt R. T.: https://doi.org/10.1021/jm950916u>
8c. ACS Symp. Ser. 1991, 456, 105.
< P., McCarthy J. R., McDonald I. A.: https://doi.org/10.1021/bk-1991-0456.ch008>
8d. J. Am. Chem. Soc. 1993, 115, 7103.
< M. C., Chen J. L., Rowley E. G., McPhail A. T.: https://doi.org/10.1021/ja00069a006>
8e. Tetrahedron 1987, 43, 3123.
< J. T.: https://doi.org/10.1016/S0040-4020(01)90286-8>
9a. J. Fluorine Chem. 2000, 101, 285.
< C., Wilcoxen K., Huang C. Q., Strack N., McCarthy J. R.: https://doi.org/10.1016/S0022-1139(99)00172-4>
9b. Tetrahedron Lett. 1999, 40, 827.
< C., Wilcoxen K., Strack N., McCarthy J. R.: https://doi.org/10.1016/S0040-4039(98)02589-1>
9c. Helv. Chim. Acta 1999, 82, 2231.
< H. J., Lin K. W., Ting T. H., Burton D. J.: https://doi.org/10.1002/(SICI)1522-2675(19991215)82:12<2231::AID-HLCA2231>3.0.CO;2-Z>
9d. Bull. Korean Chem. Soc. 1998, 19, 760.
S. H., Riediker M., Schwartz J.:
9e. Tetrahedron Lett. 1994, 35, 85.
< R.: https://doi.org/10.1016/0040-4039(94)88168-5>
9f. Tetrahedron 1995, 51, 3997.
< M. A., Kawakami J. K.: https://doi.org/10.1016/0040-4020(95)00141-T>
9g. Electrochim. Acta 1993, 38, 1037.
< A., Yamane K., Yasuzawa M., Matsui H., Uno H., Sakamoto K.: https://doi.org/10.1016/0013-4686(93)87024-8>
9h. Tetrahedron Lett. 1990, 31, 5449.
< J. R., Matthews D. P., Edwards M. L., Stemerick D. M., Jarvi E. T.: https://doi.org/10.1016/S0040-4039(00)97869-9>
9i. J. Org. Chem. 1988, 53, 2304.
< N., Kende A. S.: https://doi.org/10.1021/jo00245a032>
9j. Tetrahedron Lett. 1987, 28, 3901.
< S. T., Pittman J. H.: https://doi.org/10.1016/S0040-4039(00)96415-3>
9k. Tetrahedron Lett. 1983, 24, 725.
< V., Rukachaisirikul V.: https://doi.org/10.1016/S0040-4039(00)81509-9>
9l. Chem. Ber. 1981, 114, 4005.
< G., Fährmann U.: https://doi.org/10.1002/cber.19811141221>
9m. Chem. Lett. 1980, 651.
< S., Nakai T., Ishikawa N.: https://doi.org/10.1246/cl.1980.651>
9n. Chem. Lett. 1979, 983.
< S., Nakai T., Ishikawa N., Burton D. J., Naae D. G., Kesling H. S.: https://doi.org/10.1246/cl.1979.983>
9o. Chem. Ber. 1978, 111, 1253.
< L., Hanack M.: https://doi.org/10.1002/cber.19781110405>
9p. J. Org. Chem. 1975, 40, 2796.
< D. J., Greenlimb P. E.: https://doi.org/10.1021/jo00907a020>
9q. C. R. Seances Acad. Sci., Ser. C 1969, 269, 173.
E., Le Blanc M.:
10a. J. Org. Chem. 1999, 64, 3476.
< C., Wilcoxen K., Zhu Y. F., Kim K. I., McCarthy J. R.: https://doi.org/10.1021/jo982200n>
10b. Tetrahedron Lett. 1998, 39, 9613.
< J., Welch J. T.: https://doi.org/10.1016/S0040-4039(98)02202-3>
10c. Tetrahedron 1996, 52, 45.
< J. R., Huber E. W., Le T. B., Kaskovics F. M., Matthews D. P.: https://doi.org/10.1016/0040-4020(95)00911-Q>
10d. Tetrahedron Lett. 1995, 36, 6271.
< M., Yamada N., Takebe Y., Hiyama T.: https://doi.org/10.1016/0040-4039(95)01257-I>
10e. Org. Synth. 1995, 72, 216.
J. R., Mathews D. P., Paolini J. P.:
10f. J. Am. Chem. Soc. 1991, 113, 7439.
< J. R., Matthews D. P., Stemerick D. M., Huber E. W., Bey P., Lippert B. J., Snyder R. D., Sunkara P. S.: https://doi.org/10.1021/ja00019a061>
10g. Eur. J. Org. Chem. 2001, 897.
< J. H., van der Gen A.: https://doi.org/10.1002/1099-0690(200103)2001:5<897::AID-EJOC897>3.0.CO;2-B>
11a. J. Chem. Res., Synop. 1993, 222.
Y., Qi M.:
11b. J. Org. Chem. 1989, 54, 661.
< R. J., Graves D. M.: https://doi.org/10.1021/jo00264a029>
11c. J. Am. Chem. Soc. 1981, 103, 4452.
< S., Dahlman O., Mörch L.: https://doi.org/10.1021/ja00405a027>
12. J. Org. Chem. 2002, 67, 72.
< R., Dolbier W. R., Jr., Abboud K., Zuluaga F.: https://doi.org/10.1021/jo015778x>
13. J. Am. Chem. Soc. 1972, 94, 2000.
< W., Baeza J., Liu J.-C. : https://doi.org/10.1021/ja00761a036>
14. Org. Synth. 1991, 70, 1 and 10.
S. V., Huyer G., Arnold L. D., Vederas J. C.:
15. By using less than 2 equivalents of DMAP, 19F NMR analysis of an early sample of the reactant mixture makes possible to see the transient peak corresponding to the intermediate 3-fluoro-4,4-diphenyloxetan-2-one at –188.9 d, 2JHF = 51.
16a. J. Chem. Soc., Chem. Commun. 1979, 52.
< J., Pointner A., Chucholowski A., Brüntrup G.: https://doi.org/10.1039/c39790000052>
16b. J. Org. Chem. 1966, 31, 4043.
< D. S., Bannit E. H.: https://doi.org/10.1021/jo01350a037>
17a. J. Am. Chem. Soc. 1984, 106, 1843.
< W., Narita N., Nishizawa Y.: https://doi.org/10.1021/ja00318a053>
17b. Angew. Chem., Int. Ed. Engl. 1979, 18, 622.
< J., Brüntrup G., Chucholowski A.: https://doi.org/10.1002/anie.197906221>
18. Ethyl acetate was used instead of hexanes for the isolation of 3d because of its low solubility in hexanes.