Collect. Czech. Chem. Commun. 2002, 67, 1325-1334
https://doi.org/10.1135/cccc20021325

Synthesis of α-Fluoro-β-lactones and Their Thermal Conversion to 1-Fluoroalkenes

Rogelio Ocampoa, William R. Dolbier, Jr.b,* and Fabio Zuluagac

a Departamento de Química, Universidad de Caldas, Manizales, Colombia
b Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, U.S.A.
c Departamento de Química, Universidad del Valle, Cali, Colombia

References

1a. Pommier A., Pons J.-M.: Synthesis 1993, 441. <https://doi.org/10.1055/s-1993-25878>
1b. Mulzer J. in: Comprehensive Organic Synthesis (B. M. Trost and I. Flemming, Eds), Vol. 6, p. 323. Pergamon, Oxford 1991.
1c. Searles S. in: Comprehensive Heterocyclic Chemistry (A. R. Katrizky and C. W. Rees, Eds), Vol. 7, Part 5, p. 363. Pergamon, Oxford 1984.
2a. England D. C., Solomon L., Krespan C. G.: J. Fluorine Chem. 1973/74, 3, 63. <https://doi.org/10.1016/S0022-1139(00)82862-6>
2b. England D. C., Krespan C. G.: J. Org. Chem. 1968, 33, 816. <https://doi.org/10.1021/jo01266a069>
3. Abboud K., Dolbier W. R., Jr., Ocampo R.: Acta Crystallogr., Sect.C: Cryst. Struct. Commun. 1997, 53, 1923. <https://doi.org/10.1107/S0108270197010020>
4a. Dolbier W. R., Jr., Ocampo R., Paredes R.: J. Org. Chem. 1995, 60, 5378. <https://doi.org/10.1021/jo00122a007>
4b. Ocampo R., Dolbier W. R., Jr., Paredes R.: J. Fluorine Chem. 1998, 88, 41. <https://doi.org/10.1016/S0022-1139(97)00134-6>
5. Ocampo R., Dolbier W. R., Jr., Bartberger M. D., Paredes R.: J. Org. Chem. 1997, 62, 109. <https://doi.org/10.1021/jo961648q>
6. Morao I., Lecea B., Arrieta A., Cossío F. P.: J. Am. Chem. Soc. 1997, 119, 816. <https://doi.org/10.1021/ja962810+>
7. Smart B. E. in: Organofluorine Chemistry: Principles and Commercial Applications (R. E. Banks, B. E. Smart and J. C. Tatlow, Eds), p. 57. Plenum Press, New York 1994.
8a. Robins M. J., Neschadimenko V., Ro B. O., Yuan C. S., Borchardt R. T., Wnuk S. F.: J. Org. Chem. 1998, 63, 1205. <https://doi.org/10.1021/jo971741u>
8b. Liu S. M., Yuan C. S., Borchardt R. T.: J. Med. Chem. 1996, 39, 2347. <https://doi.org/10.1021/jm950916u>
8c. Bey P., McCarthy J. R., McDonald I. A.: ACS Symp. Ser. 1991, 456, 105. <https://doi.org/10.1021/bk-1991-0456.ch008>
8d. Pirrung M. C., Chen J. L., Rowley E. G., McPhail A. T.: J. Am. Chem. Soc. 1993, 115, 7103. <https://doi.org/10.1021/ja00069a006>
8e. Welch J. T.: Tetrahedron 1987, 43, 3123. <https://doi.org/10.1016/S0040-4020(01)90286-8>
9a. Chen C., Wilcoxen K., Huang C. Q., Strack N., McCarthy J. R.: J. Fluorine Chem. 2000, 101, 285. <https://doi.org/10.1016/S0022-1139(99)00172-4>
9b. Chen C., Wilcoxen K., Strack N., McCarthy J. R.: Tetrahedron Lett. 1999, 40, 827. <https://doi.org/10.1016/S0040-4039(98)02589-1>
9c. Tsai H. J., Lin K. W., Ting T. H., Burton D. J.: Helv. Chim. Acta 1999, 82, 2231. <https://doi.org/10.1002/(SICI)1522-2675(19991215)82:12<2231::AID-HLCA2231>3.0.CO;2-Z>
9d. Lee S. H., Riediker M., Schwartz J.: Bull. Korean Chem. Soc. 1998, 19, 760.
9e. Bohlmann R.: Tetrahedron Lett. 1994, 35, 85. <https://doi.org/10.1016/0040-4039(94)88168-5>
9f. Tius M. A., Kawakami J. K.: Tetrahedron 1995, 51, 3997. <https://doi.org/10.1016/0040-4020(95)00141-T>
9g. Kunugi A., Yamane K., Yasuzawa M., Matsui H., Uno H., Sakamoto K.: Electrochim. Acta 1993, 38, 1037. <https://doi.org/10.1016/0013-4686(93)87024-8>
9h. McCarthy J. R., Matthews D. P., Edwards M. L., Stemerick D. M., Jarvi E. T.: Tetrahedron Lett. 1990, 31, 5449. <https://doi.org/10.1016/S0040-4039(00)97869-9>
9i. Matsuo N., Kende A. S.: J. Org. Chem. 1988, 53, 2304. <https://doi.org/10.1021/jo00245a032>
9j. Purrington S. T., Pittman J. H.: Tetrahedron Lett. 1987, 28, 3901. <https://doi.org/10.1016/S0040-4039(00)96415-3>
9k. Reutrakul V., Rukachaisirikul V.: Tetrahedron Lett. 1983, 24, 725. <https://doi.org/10.1016/S0040-4039(00)81509-9>
9l. Boche G., Fährmann U.: Chem. Ber. 1981, 114, 4005. <https://doi.org/10.1002/cber.19811141221>
9m. Hayashi S., Nakai T., Ishikawa N.: Chem. Lett. 1980, 651. <https://doi.org/10.1246/cl.1980.651>
9n. Hayashi S., Nakai T., Ishikawa N., Burton D. J., Naae D. G., Kesling H. S.: Chem. Lett. 1979, 983. <https://doi.org/10.1246/cl.1979.983>
9o. Eckes L., Hanack M.: Chem. Ber. 1978, 111, 1253. <https://doi.org/10.1002/cber.19781110405>
9p. Burton D. J., Greenlimb P. E.: J. Org. Chem. 1975, 40, 2796. <https://doi.org/10.1021/jo00907a020>
9q. Elkik E., Le Blanc M.: C. R. Seances Acad. Sci., Ser. C 1969, 269, 173.
10a. Chen C., Wilcoxen K., Zhu Y. F., Kim K. I., McCarthy J. R.: J. Org. Chem. 1999, 64, 3476. <https://doi.org/10.1021/jo982200n>
10b. Lin J., Welch J. T.: Tetrahedron Lett. 1998, 39, 9613. <https://doi.org/10.1016/S0040-4039(98)02202-3>
10c. McCarthy J. R., Huber E. W., Le T. B., Kaskovics F. M., Matthews D. P.: Tetrahedron 1996, 52, 45. <https://doi.org/10.1016/0040-4020(95)00911-Q>
10d. Kuroboshi M., Yamada N., Takebe Y., Hiyama T.: Tetrahedron Lett. 1995, 36, 6271. <https://doi.org/10.1016/0040-4039(95)01257-I>
10e. McCarthy J. R., Mathews D. P., Paolini J. P.: Org. Synth. 1995, 72, 216.
10f. McCarthy J. R., Matthews D. P., Stemerick D. M., Huber E. W., Bey P., Lippert B. J., Snyder R. D., Sunkara P. S.: J. Am. Chem. Soc. 1991, 113, 7439. <https://doi.org/10.1021/ja00019a061>
10g. van Steenis J. H., van der Gen A.: Eur. J. Org. Chem. 2001, 897. <https://doi.org/10.1002/1099-0690(200103)2001:5<897::AID-EJOC897>3.0.CO;2-B>
11a. Shen Y., Qi M.: J. Chem. Res., Synop. 1993, 222.
11b. Linderman R. J., Graves D. M.: J. Org. Chem. 1989, 54, 661. <https://doi.org/10.1021/jo00264a029>
11c. Brandänge S., Dahlman O., Mörch L.: J. Am. Chem. Soc. 1981, 103, 4452. <https://doi.org/10.1021/ja00405a027>
12. Ocampo R., Dolbier W. R., Jr., Abboud K., Zuluaga F.: J. Org. Chem. 2002, 67, 72. <https://doi.org/10.1021/jo015778x>
13. Adam W., Baeza J., Liu J.-C. : J. Am. Chem. Soc. 1972, 94, 2000. <https://doi.org/10.1021/ja00761a036>
14. Pansare S. V., Huyer G., Arnold L. D., Vederas J. C.: Org. Synth. 1991, 70, 1 and 10.
15. By using less than 2 equivalents of DMAP, 19F NMR analysis of an early sample of the reactant mixture makes possible to see the transient peak corresponding to the intermediate 3-fluoro-4,4-diphenyloxetan-2-one at –188.9 d, 2JHF = 51.
16a. Mulzer J., Pointner A., Chucholowski A., Brüntrup G.: J. Chem. Soc., Chem. Commun. 1979, 52. <https://doi.org/10.1039/c39790000052>
16b. Noyce D. S., Bannit E. H.: J. Org. Chem. 1966, 31, 4043. <https://doi.org/10.1021/jo01350a037>
17a. Adam W., Narita N., Nishizawa Y.: J. Am. Chem. Soc. 1984, 106, 1843. <https://doi.org/10.1021/ja00318a053>
17b. Mulzer J., Brüntrup G., Chucholowski A.: Angew. Chem., Int. Ed. Engl. 1979, 18, 622. <https://doi.org/10.1002/anie.197906221>
18. Ethyl acetate was used instead of hexanes for the isolation of 3d because of its low solubility in hexanes.