Collect. Czech. Chem. Commun.
2003, 68, 105-138
https://doi.org/10.1135/cccc20030105
Effective Hamiltonian and Intermediate Hamiltonian Formulations of the Fock-Space Coupled-Cluster Method
Leszek Meissner* and JarosłaW Gryniaków
Institute of Physics, Nicholas Copernicus University, PL-87-100 Toruń, Poland
References
1a. F.: Nucl. Phys. 1958, 7, 421.
<https://doi.org/10.1016/0029-5582(58)90280-3>
1b. F., Kümmel H.: Nucl. Phys. 1960, 17, 477.
<https://doi.org/10.1016/0029-5582(60)90140-1>
1c. J.: J. Chem. Phys. 1966, 45, 4256.
<https://doi.org/10.1063/1.1727484>
1d. J., Čižek J., Shavitt I.: Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 50.
<https://doi.org/10.1103/PhysRevA.5.50>
2a. R. J.: Annu. Rev. Phys. Chem. 1981, 32, 359.
<https://doi.org/10.1146/annurev.pc.32.100181.002043>
2b. R. J.: J. Phys. Chem. 1989, 93, 1697.
<https://doi.org/10.1021/j100342a008>
2c. Paldus J. in: Methods in Computational Molecular Physics (S. Wilson and G. H. F. Diercksen, Eds). Plenum Press, New York 1992.
2d. Paldus J. in: Relativistic and Electron Correlation Effects in Molecules and Solids, NATO Advanced Study Institute, Series B: Physics (G. L. Malli, Ed.), Vol. 318. Plenum, New York 1992.
2e. Bartlett R. J. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.). World Scientific, Singapore 1995.
2f. J., Li X.: Adv. Chem. Phys. 1999, 110, 1.
<https://doi.org/10.1002/9780470141694.ch1>
3a. D., Moitra R. K., Mukhopadhyay A.: Pramana 1975, 4, 247.
<https://doi.org/10.1007/BF02848581>
3b. D., Moitra R. K., Mukhopadhyay A.: Mol. Phys. 1975, 30, 1861.
<https://doi.org/10.1080/00268977500103351>
4a. R., Ey W., Kümmel H.: Nucl. Phys. A 1976, 273, 349.
<https://doi.org/10.1016/0375-9474(76)90596-0>
4b. R.: Nucl. Phys. 1976, 273, 368.
<https://doi.org/10.1016/0375-9474(76)90597-2>
4c. W.: Nucl. Phys. 1978, 296, 189.
<https://doi.org/10.1016/0375-9474(78)90068-4>
5. I.: Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 33.
6. Lindgren I., Morrison J.: Atomic Many-Body Theory, Springer Series in Chemical Physics, Vol. 13. Springer, Berlin 1982.
7. D.: Pramana 1979, 12, 203.
<https://doi.org/10.1007/BF02846388>
8. I., Mukherjee D.: Phys. Rep. 1987, 151, 93.
<https://doi.org/10.1016/0370-1573(87)90073-1>
9. Kaldor U. in: Many-Body Methods in Computational Molecular Physics, Lecture Notes in Chemistry (U. Kaldor, Ed.), Vol. 52. Springer, Berlin 1989.
10. L. Z., Monkhorst H. J.: Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 725.
<https://doi.org/10.1103/PhysRevA.32.725>
11. B., Paldus J.: J. Chem. Phys. 1989, 90, 2714.
<https://doi.org/10.1063/1.455919>
12. S., Rittby M., Bartlett R. J., Sinha D., Mukherjee D.: J. Chem. Phys. 1988, 88, 4357.
<https://doi.org/10.1063/1.453795>
13. S. R.., Kaldor U.: Chem. Phys. Lett. 1992, 194, 99.
<https://doi.org/10.1016/0009-2614(92)85749-Z>
14. L.: J. Chem. Phys. 1995, 103, 8014.
<https://doi.org/10.1063/1.470168>
15. B., Monkhorst H. J.: Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.
<https://doi.org/10.1103/PhysRevA.24.1668>
16. L., Jankowski K., Wasilewski J.: Int. J. Quantum Chem. 1988, 34, 535.
<https://doi.org/10.1002/qua.560340607>
17. Paldus J., Pylypov L., Jeziorski B. in: Many-Body Methods in Quantum Chemistry, Lecture Notes in Chemistry (U. Kaldor, Ed.), Vol. 52. Springer, Berlin 1989.
18. A., Kucharski S. A., Meissner L., Bartlett R. J.: Theor. Chim. Acta 1991, 80, 335.
<https://doi.org/10.1007/BF01117417>
19. Paldus J., Piecuch P., Jeziorski B., Pylypov L. in: Recent Progress in Many-Body Theories (T. L. Ainsworth, C. E. Cambell, D. E. Clements and E. Krotschek, Eds), Vol. 3. Plenum Press, New York 1992.
20a. D. J.: J. Chem. Phys. 1974, 61, 789.
20b. I.: J. Phys. B: At., Mol. Opt. Phys. 1974, 7, 2441.
<https://doi.org/10.1088/0022-3700/7/18/010>
20c. F.: Mol. Phys. 1975, 29, 1137.
<https://doi.org/10.1080/00268977500100971>
20d. Durand Ph.: Phys. Rev. A: At., Mol., Opt. Phys. 1983, 28, 3184.
<https://doi.org/10.1103/PhysRevA.28.3184>
21. L., Nooijen M.: J. Chem. Phys. 1995, 102, 9604.
<https://doi.org/10.1063/1.468777>
22. T. H., Weidenmuller H. A.: Ann. Phys. (N.Y.) 1973, 76, 483.
<https://doi.org/10.1016/0003-4916(73)90044-4>
23. J. P., Durand Ph., Dauday J. P.: J. Phys. A: Math. Gen. 1985, 18, 809.
<https://doi.org/10.1088/0305-4470/18/5/014>
24. D.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 20, 409.
<https://doi.org/10.1002/qua.560300737>
25. D., Mukhopadhyay S., Chaudhuri R., Mukherjee D.: Chem. Phys. Lett. 1989, 154, 544.
<https://doi.org/10.1016/0009-2614(89)87149-0>
26a. J.-P., Daudey J.-P., Maynau D.: J. Chem. Phys. 1994, 101, 8909.
<https://doi.org/10.1063/1.468083>
26b. J., Malrieu J.-P., Caballol R.: J. Chem. Phys. 1996, 104, 4068.
<https://doi.org/10.1063/1.471220>
26c. J.-L., Malrieu J.-P., Nebot-Gil I., Sanchez-Marin J.: Chem. Phys. Lett. 1996, 256, 589.
<https://doi.org/10.1016/0009-2614(96)00464-2>
27s. . Plenum, New York 1995.
27b. U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1999, 110, 6171.
<https://doi.org/10.1063/1.478523>
28a. Hubač I., Mašik J. in: Quantum Systems in Chemistry and Physics (R. McWeeny, J. Maruani, Y. Smeyers and S. Wilsom, Eds). Kluwer Academic, Dordrecht 1998.
28b. J., Nachtigall P., Čársky P., Mašik J., Hubač I.: J. Chem. Phys. 1999, 110, 10275.
<https://doi.org/10.1063/1.478961>
28c. I., Pittner J., Čársky P.: J. Chem. Phys. 2000, 112, 8779.
<https://doi.org/10.1063/1.481493>
29a. A., Eliav E., Kaldor U.: Chem. Phys. Lett. 1999, 313, 399.
<https://doi.org/10.1016/S0009-2614(99)01067-2>
29b. A., Eliav E., Ishikawa Y., Kaldor U.: J. Chem. Phys. 2000, 113, 9905.
<https://doi.org/10.1063/1.1323258>
29c. A., Eliav E., Ishikawa Y., Kaldor U.: J. Chem. Phys. 2001, 115, 6862.
<https://doi.org/10.1063/1.1405005>
30. B. H.: Rev. Mod. Phys. 1967, 39, 771.
<https://doi.org/10.1103/RevModPhys.39.771>
31. G., Kaldor U.: J. Phys. B: At., Mol. Opt. Phys. 1979, 12, 3827.
<https://doi.org/10.1088/0022-3700/12/23/012>
32a. I.: Phys. Scr. 1985, 32, 291.
<https://doi.org/10.1088/0031-8949/32/4/009>
32b. I.: Phys. Scr. 1985, 32, 661.
33. M. A., Mukherjee D.: J. Chem. Phys. 1984, 80, 5058.
<https://doi.org/10.1063/1.446574>
34. K., Sellers H. L., Pulay P.: Chem. Phys. Lett. 1987, 140, 225.
<https://doi.org/10.1016/0009-2614(87)80448-7>
35. K., Malmqvist P. A., Roos B. O.: J. Chem. Phys. 1992, 96, 1218.
<https://doi.org/10.1063/1.462209>
36. A., Simons J.: Int. J. Quantum Chem. 1981, 19, 207.
<https://doi.org/10.1002/qua.560190203>
37. H.-J., Knowles P. J.: J. Chem. Phys. 1988, 89, 5803.
<https://doi.org/10.1063/1.455556>
38. N., Adamowicz L.: J. Chem. Phys. 1991, 95, 6645.
<https://doi.org/10.1063/1.461534>
39. P., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1999, 110, 6103.
<https://doi.org/10.1063/1.478517>
40. L. Z.: Chem. Phys. Lett. 1994, 217, 1.
<https://doi.org/10.1016/0009-2614(93)E1333-C>
41a. J., Planelles J.: Theor. Chim. Acta 1994, 89, 13.
<https://doi.org/10.1007/BF01167279>
41b. J., Paldus J., Li X.: Theor. Chim. Acta 1994, 89, 33.
<https://doi.org/10.1007/BF01167280>
42a. X., Paldus J.: J. Chem. Phys. 1997, 107, 6257.
<https://doi.org/10.1063/1.474289>
42b. X., Paldus J.: J. Chem. Phys. 1998, 108, 637.
<https://doi.org/10.1063/1.475425>
42c. X., Paldus J.: Chem. Phys. Lett. 1998, 286, 145.
<https://doi.org/10.1016/S0009-2614(97)01132-9>
42d. X., Paldus J.: J. Chem. Phys. 2000, 113, 9966.
<https://doi.org/10.1063/1.1323260>
42e. X., Paldus J.: J. Chem. Phys. 2002, 117, 1941.
<https://doi.org/10.1063/1.1488597>
43a. L., Grabowski I.: Chem. Phys. Lett. 1998, 300, 53.
<https://doi.org/10.1016/S0009-2614(98)01332-3>
43b. L., Nooijen M.: Chem. Phys. Lett. 2000, 316, 501.
<https://doi.org/10.1016/S0009-2614(99)01209-9>
44. K., Piecuch P.: J. Chem. Phys. 2000, 113, 18.
<https://doi.org/10.1063/1.481769>
45. L., Bartlett R. J.: J. Chem. Phys. 2001, 115, 50.
<https://doi.org/10.1063/1.1373434>
46. L., Balkova A., Bartlett R. J.: Chem. Phys. Lett. 1993, 212, 177.
<https://doi.org/10.1016/0009-2614(93)87127-O>
47. L.: Chem. Phys. Lett. 1995, 225, 244.
48. K., Malinowski P.: Int. J. Quantum Chem. 1996, 59, 239.
<https://doi.org/10.1002/(SICI)1097-461X(1996)59:3<239::AID-QUA7>3.0.CO;2-Z>
49. K., Malinowski P.: J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1287.
<https://doi.org/10.1088/0953-4075/27/7/004>
50. J., Čižek J.: Adv. Quantum Chem. 1975, 9, 105.
<https://doi.org/10.1016/S0065-3276(08)60040-4>
51. S., Lindgren I., Mårtensson A.-M.: Phys. Scr. 1980, 21, 351.
<https://doi.org/10.1088/0031-8949/21/3-4/018>
52. U.: Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 6013.
<https://doi.org/10.1103/PhysRevA.38.6013>
53. E., Mårtenson-Pendrill A.-M.: Phys. Rev. A: At., Mol., Opt. Phys. 1996, 53, 3151.
<https://doi.org/10.1103/PhysRevA.53.3151>
54a. D.: Chem. Phys. Lett. 1986, 125, 1986.
54b. D.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 20, 409.
<https://doi.org/10.1002/qua.560300737>
55a. L., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1989, 91, 6187.
<https://doi.org/10.1063/1.457437>
55b. L., Bartlett R. J.: J. Chem. Phys. 1990, 92, 561.
<https://doi.org/10.1063/1.458406>
56. P., Jankowski K.: J. Phys. B: At., Mol. Opt. Phys. 1993, 26, 3035.
<https://doi.org/10.1088/0953-4075/26/18/014>
57. L.: J. Chem. Phys. 1998, 108, 9227.
<https://doi.org/10.1063/1.476377>
58. L., Malinowski P.: Phys. Rev. A: At., Mol., Opt. Phys. 2000, 61, 62510.
<https://doi.org/10.1103/PhysRevA.61.062510>
59. P., Meissner L., Nowaczyk A.: J. Chem. Phys. 2002, 116, 7362.
<https://doi.org/10.1063/1.1464817>
60. P., Jankowski K.: J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 829.
61a. M.: J. Chem. Phys. 1996, 104, 2638.
<https://doi.org/10.1063/1.470988>
61b. M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6441.
<https://doi.org/10.1063/1.474000>
62. M., Bartlett R. J.: J. Chem. Phys. 1997, 107, 6812.
<https://doi.org/10.1063/1.474922>
63a. K.: Nucl. Phys. A 1981, 351, 397.
<https://doi.org/10.1016/0375-9474(81)90180-9>
63b. J., Rittby M., Bartlett R. J.: Chem. Phys. Lett. 1989, 164, 57.
<https://doi.org/10.1016/0009-2614(89)85202-9>

