Collect. Czech. Chem. Commun.
2003, 68, 2055-2079
https://doi.org/10.1135/cccc20032055
Theoretical Studies of Catalysis by Carboxypeptidase A: Could Gas-Phase Calculations Support a Mechanism?
Alexandra Kilshtain-Vardia,b, Gil Shohama and Amiram Goldblumb,*
a Department of Inorganic and Analytical Chemistry, Institute of Chemistry, Hebrew University of Jerusalem, Israel 91120
b Department of Medicinal Chemistry and the David R. Bloom Center for Pharmacy, School of Pharmacy, Hebrew University of Jerusalem, Israel 91120
References
1. Adv. Enzymol. Relat. Areas Mol. Biol. 1984, 56, 283.
< B. L., Galdes A.: https://doi.org/10.1002/9780470123027.ch5>
2a. Annu. Rev. Biochem. 1976, 45, 73.
< R. L.: https://doi.org/10.1146/annurev.bi.45.070176.000445>
2b. Annu. Rev. Biochem. 1982, 51, 283.
< M. A., Cushman D. W.: https://doi.org/10.1146/annurev.bi.51.070182.001435>
3a. Nature 1978, 276, 523.
< B., Swerts J. P., Guyon A., Roques B. P., Schwartz J. C.: https://doi.org/10.1038/276523a0>
3b. Life Sci. 1990, 47, 1279.
< J. C., Gros C., Lecomte J. M., Bralet J.: https://doi.org/10.1016/0024-3205(90)90192-T>
4. Rheumatology 2001, 40, 537.
< F. J., Farhan M., Rowland J., Banken L., Jain R.: https://doi.org/10.1093/rheumatology/40.5.537>
5. Breast Cancer Res. 2000, 2, 252.
< M. J., Maguire T. M., Hill A., McDermott E., O’Higgins N.: https://doi.org/10.1186/bcr65>
6. Adv. Enzymol. Relat. Areas Mol. Biol. 1985, 57, 1.
< A. A., Cordes E. H.: https://doi.org/10.1002/9780470123034.ch1>
7. Biochim. Biophys. Acta 2000, 1477, 284.
< J., Querol E., Aviles F. X.: https://doi.org/10.1016/S0167-4838(99)00280-0>
8. J. Mol. Biol. 1983, 168, 367.
< D. C., Lewis M., Lipscomb W. N.: https://doi.org/10.1016/S0022-2836(83)80024-2>
9. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1998, 54, 289.
< H. M., Feinberg H., Tucker P. A., Shoham G.: https://doi.org/10.1107/S0907444997010445>
10. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1993, 49, 534.
< A., Wilson K. S., Orioli P., Mangani S.: https://doi.org/10.1107/S0907444993007267>
11. Acc. Chem. Res. 1988, 21, 333.
< B. W.: https://doi.org/10.1021/ar00153a003>
12. Proc. Natl. Acad. Sci. U.S.A. 1980, 77.
W. N.:
13. Acc. Chem. Res. 1989, 22, 62.
< D. W., Lipscomb W. N.: https://doi.org/10.1021/ar00158a003>
14. Acc. Chem. Res. 1993, 26, 543.
< B. L., Auld D. S.: https://doi.org/10.1021/ar00034a005>
15a. J. Biol. Chem. 1979, 254, 356.
M. W., Kuo L. C., Dymowski J. J., Jaffer S. L.:
15b. J. Am. Chem. Soc. 1985, 107, 5255.
< L. C., Makinen M. W.: https://doi.org/10.1021/ja00304a036>
15c. J. Am. Chem. Soc. 1992, 114, 5295.
< B. M., Peticolas W. L.: https://doi.org/10.1021/ja00039a046>
16. J. Am. Chem. Soc. 1992, 114, 5141.
< J., Park T. H., Hwang B. K.: https://doi.org/10.1021/ja00039a027>
17. Biochem. Biophys. Res. Commun. 1985, 132, 681.
< M. E., Witzel H.: https://doi.org/10.1016/0006-291X(85)91186-6>
18. J. Biol. Chem. 1994, 269, 4587.
D., Makinen M. W.:
19. Bioorg. Med. Chem. Lett. 1998, 8, 3379.
< H. C., Ko Y. H., Baek S. B., Kim D. H.: https://doi.org/10.1016/S0960-894X(98)00624-6>
20. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 7568.
< D. W., Lipscomb W. N.: https://doi.org/10.1073/pnas.83.20.7568>
21. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 1303.
< R., Wernick D. L.: https://doi.org/10.1073/pnas.74.4.1303>
22. J. Am. Chem. Soc. 1976, 98, 259.
< R., Wernick D. L.: https://doi.org/10.1021/ja00417a055>
23. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 5041.
< D. S., Galdes A., Geoghegan K. F., Holmquist B., Martinelli R. A., Vallee B. L.: https://doi.org/10.1073/pnas.81.16.5041>
24. Bioorg. Med. Chem. 2000, 8, 815.
< M., Kim D. H.: https://doi.org/10.1016/S0968-0896(00)00006-7>
25. Bioorg. Med. Chem. 2000, 6, 1613.
< K. J., Kim D. H.: https://doi.org/10.1016/S0968-0896(98)00082-0>
26. J. Am. Chem. Soc. 1986, 108, 545.
< D. W., Lipscomb W. N.: https://doi.org/10.1021/ja00263a052>
27. J. Am. Chem. Soc. 1988, 110, 5560.
< D. W., Lipscomb W. N.: https://doi.org/10.1021/ja00224a047>
28. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 684.
< G., Christianson D. W., Oren D. A.: https://doi.org/10.1073/pnas.85.3.684>
29. Chem. Inf. Comp. Sci. 1993, 33, 501.
< H., Greenblatt H. M., Shoham G. J.: https://doi.org/10.1021/ci00013a030>
30. J. Biol. Chem. 1991, 266, 6369.
L. W., Zhang J. Z.:
31. Chem. Pharm. Bull. 1981, 29, 1.
< S., Umeyama H., Kitaura K., Morokuma K.: https://doi.org/10.1248/cpb.29.1>
32. J. Comput. Chem. 1992, 13, 704.
< A., Clark T.: https://doi.org/10.1002/jcc.540130605>
33a. Can. J. Chem. 1994, 72, 2077.
< S., Gonzalez-Lafont A., Lluch J. M., Oliva B., Aviles F. X.: https://doi.org/10.1139/v94-264>
33b. New J. Chem. 1998, 22, 319.
< S., Gonzalez-Lafont A., Lluch J. M., Oliva B., Aviles F. X.: https://doi.org/10.1039/a708751i>
34. Abashkin Y. G., Burt S. K., Collins J. R., Cachau R. E., Russo R. N., Erickson J. W. in: Metal–Ligand Interactions (N. Russo and D. R. Salahub, Eds), Vol. 474, p. 1. Kluwer, Dordrecht 1996.
35. Int. J. Quantum Chem. 2002, 88, 87.
< A., Goldblum A., Shoham G.: https://doi.org/10.1002/qua.10094>
36. Proteins 1994, 18, 186.
< L., Bertini I., La Penna G.: https://doi.org/10.1002/prot.340180210>
37. Kilshtain-Vardi A., Goldblum A., Shoham G.: J. Mol. Phys. 2002, submitted.
38. Acta. Crystallogr., Sect. D: Biol. Crystallogr. 1995, 51, 428.
< H., Greenblatt H. M., Behar V., Gilon S., Cohen S., Bino A., Shoham G.: https://doi.org/10.1107/S0907444995003350>
39. Kilshtain-Vardi A., Shoham G.: Unpublished results.
40a. Int. J. Pept. Protein Res. 1988, 31, 269.
< A., Cohen-Suissa R., Levian-Teitelbaum D., Selinger Z., Chorev M., Gilon C.: https://doi.org/10.1111/j.1399-3011.1988.tb00034.x>
40b. J. Med. Chem. 1988, 31, 416.
< A., Laufer R., Chorev M., Selinger Z., Gilon C.: https://doi.org/10.1021/jm00397a026>
41. Seroussi D., Glick M., Goldblum A.: Unpublished results.
42. J. Comput.-Aided Mol. Des. 1989, 3, 23.
< C., Jacob O.: https://doi.org/10.1007/BF01590993>
43. Theor. Chim. Acta 1992, 81, 391.
< W., Voityuk A. A.: https://doi.org/10.1007/BF01134863>
44. J. Mol. Struct. 2000, 505, 289.
< M., Kunert M., Dinjus E., Klussman M., Doring M., Gorls H., Anders E.: https://doi.org/10.1016/S0166-1280(99)00401-7>
45. Theor. Chim. Acta 1984, 64, 397.
< K. Ya., Isaev A. N.: https://doi.org/10.1007/BF00548949>
46. J. Comput. Chem. 1987, 6, 835.
< A.: https://doi.org/10.1002/jcc.540080612>
47. Oxford Molecular Inc.: UNICHEM 5.0, 1999.
48. Flanigan M. C., Komornicki A., McIver J. W. in: Semiempirical Methods of Electronic Structure Calculations, Part B: Applications (G. A. Segal, Ed.), p. 1. Plenum Press, New York and London 1977.
49. Polgar L.: Biol. Chem. Hoppe–Seyler 1990, 371, Suppl. 327.
50. Biochem. J. 1982, 207, 1.
< L., Halasz P.: https://doi.org/10.1042/bj2070001>
51. Fruton J. S. in: Enzymes (P. D. Boyer, Ed.), 3rd ed., Vol. 3, p. 119. Academic Press, New York 1971.
52a. Eur. J. Biochem. 1982, 117, 195.
< V. K., Ginodman L. M., Rumsh L. D., Kapitannikov Yu. V., Barshevskaya T. N., Yavashev L. P., Gurova A. G., Volkova L. I.: https://doi.org/10.1111/j.1432-1033.1981.tb06321.x>
52b. Biochemistry 1985, 24, 3701.
< M. N. G., Sielecki A. R.: https://doi.org/10.1021/bi00335a045>
53. FEBS Lett. 1987, 219(1), 1.
< L.: https://doi.org/10.1016/0014-5793(87)81179-1>
54. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11158.
< D., Simons K. T., Baker D.: https://doi.org/10.1073/pnas.95.19.11158>
55. J. Mol. Struct. (THEOCHEM) 1988, 179, 153.
< A.: https://doi.org/10.1016/0166-1280(88)80120-9>