Collect. Czech. Chem. Commun.
2003, 68, 2309-2321
https://doi.org/10.1135/cccc20032309
Multireference Brillouin-Wigner Coupled Cluster Singles and Doubles (MRBWCCSD) and Multireference Doubles Configuration Interaction (MRD-CI) Calculations for the Bergman Cyclization Reaction
Oscar Rey Puiggrosa, Jiří Pittnera,*, Petr Čárskya,*, Philipp Stampfussb and Wolfgang Wenzelb
a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
b Research Centre Karlsruhe, Institute for Nanotechnology, P.O. Box 3640, D-76021 Karlsruhe, Germany
References
1. Acc. Chem. Res. 1973, 6, 25.
< R. C.: https://doi.org/10.1021/ar50061a004>
2. J. Am. Chem. Soc. 1972, 94, 660.
< R. R., Bergman R. C.: https://doi.org/10.1021/ja00757a071>
3. J. Am. Chem. Soc. 1981, 103, 4082.
< T. P., Comita P. B., Bergman R. C.: https://doi.org/10.1021/ja00404a018>
4. J. Org. Chem. 2001, 66, 1742.
< B., Pitsch W., Klein M., Vasold R., Prall M., Schreiner P. R.: https://doi.org/10.1021/jo001417q>
5. Tetrahedron 2001, 57, 3753.
< D. M., Palmer G. J., Landis C. A., Scott J. L., Anthony J. E.: https://doi.org/10.1016/S0040-4020(01)00247-2>
6. J. Org. Chem. 2001, 66, 8669.
< G. B., Warner P. M.: https://doi.org/10.1021/jo015947d>
7. J. Org. Chem. 2002, 67, 5369.
< G. W., Jr., Warner P. M., Parrish D. A., Jones G. B.: https://doi.org/10.1021/jo025763e>
8. J. Am. Chem. Soc. 2000, 122, 8245.
< E., Cremer D.: https://doi.org/10.1021/ja001017k>
9. J. Am. Chem. Soc. 1998, 120, 1835.
< A., Turro, N. J.: https://doi.org/10.1021/ja9722943>
10. J. Am. Chem. Soc. 1998, 120, 5279.
< P. G., Squires R. R., Lineberger W. C.: https://doi.org/10.1021/ja9803355>
11. J. Am. Chem. Soc. 1992, 114, 10082.
< K. C., Hummel C. W., Pitsinos E. N., Nakada M., Smith A. L., Shibayama K., Saimoto H.: https://doi.org/10.1021/ja00051a063>
12. Tetrahedron Lett. 1987, 28, 4493.
< A. G.: https://doi.org/10.1016/S0040-4039(00)96545-6>
13. J. Am. Chem. Soc. 1992, 114, 7946.
< J. E., Schroeder D. R., Hofstead S. J., Golik J., Colson K. L., Huang S., Klohr S. E., Doyle T. W., Matson J. A.: https://doi.org/10.1021/ja00046a071>
14. J. Am. Chem. Soc. 1987, 109, 3464.
< M. D., Dunne T. S., Siegel M. M., Chang C. C., Morton G. O., Borders D. B.: https://doi.org/10.1021/ja00245a050>
15. J. Am. Chem. Soc. 1987, 109, 3462.
< J., Dubay G., Groenewold G., Kawaguchi H., Konishi M., Krishman B., Ohkuma H., Saitoh K., Doyle T. W.: https://doi.org/10.1021/ja00245a049>
16. Chem. Ber. 1994, 127, 1765.
< W., Hopf H., Horn C.: https://doi.org/10.1002/cber.19941270929>
17. J. Am. Chem. Soc. 1994, 116, 6401.
< P. G., Squires R. R.: https://doi.org/10.1021/ja00093a047>
18. J. Am. Chem. Soc. 1991, 113, 1907.
< N., Morokuma K.: https://doi.org/10.1021/ja00006a006>
19. Angew. Chem., Int. Ed. Engl. 1998, 37, 955.
< R., Balster A., Sander W., Kraka E., Cremer D., Radziszewski J. G.: https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<955::AID-ANIE955>3.0.CO;2-T>
20. J. Am. Chem. Soc. 1994, 116, 4929.
< E., Cremer D.: https://doi.org/10.1021/ja00090a043>
21. J. Am. Chem. Soc. 1994, 116, 4963.
< R., Persson J.: https://doi.org/10.1021/ja00090a047>
22. J. Am. Chem. Soc. 1995, 117, 7186.
< R., Lee T. J., Bernhardsson A., Persson J., Karlström G.: https://doi.org/10.1021/ja00132a019>
23. Chem. Phys. Lett. 1996, 258, 409.
< R., Schütz M.: https://doi.org/10.1016/0009-2614(96)00653-7>
24. Chem. Phys. Lett. 1997, 277, 311.
< C. J., Nash J. J., Squires R. R.: https://doi.org/10.1016/S0009-2614(97)00855-5>
25. J. Am. Chem. Soc. 1998, 120, 376.
< J., Schottelius M. J., Feichtinger D., Chen P.: https://doi.org/10.1021/ja9730223>
26. J. Am. Chem. Soc. 1998, 120, 4184.
< P. R.: https://doi.org/10.1021/ja973591a>
27. J. Am. Chem. Soc. 1998, 120, 6261.
< C. J.: https://doi.org/10.1021/ja9806579>
28. J. Phys. Chem. A 2000, 104, 1748.
< J., Hjerpe A. M., Kraka E., Cremer D.: https://doi.org/10.1021/jp993122q>
29. Chem. Eur. J. 2000, 6, 1446.
< J. M., Schreiner P. R., Harris N., Wei W., Wittkopp A., Shaik S.: https://doi.org/10.1002/(SICI)1521-3765(20000417)6:8<1446::AID-CHEM1446>3.0.CO;2-I>
30. J. Am. Chem. Soc. 2001, 123, 2650.
< A. E., Davidson E. R., Zaleski J. M.: https://doi.org/10.1021/ja0039987>
31. J. Chem. Phys. 2001, 114, 10638.
< T. D., Kraka E., Stanton J. F., Cremer D.: https://doi.org/10.1063/1.1373433>
32. Eur. J. Org. Chem. 2001, 2185.
< B. A., Jr.: https://doi.org/10.1002/1099-0690(200106)2001:11<2185::AID-EJOC2185>3.0.CO;2-B>
33. J. Comput. Chem. 2001, 22, 1605.
< M., Wittkopp A., Fokin A. A., Scheiner P. R.: https://doi.org/10.1002/jcc.1114>
34. J. Phys. Chem. A 2001, 105, 9265.
< M., Wittkopp A., Schreiner P. R.: https://doi.org/10.1021/jp0028002>
35. Mol. Phys. 2002, 100, 1807.
< P., Wenzel W.: https://doi.org/10.1080/00268970210127988>
36. J. Phys. Chem. A 1999, 103, 7672.
< S., Fujimura Y., Hirama M.: https://doi.org/10.1021/jp991135y>
37. J. Am. Chem. Soc. 2001, 123, 2134.
< G. B., Warner P. M.: https://doi.org/10.1021/ja0033032>
38. Hubač I. in: New Methods in Quantum Theory (C. A. Tsipis, V. S. Popov, D. R. Herschbach and J. S. Avery, Eds), p. 183. NATO ASI Series, Kluwer, Dordrecht, 1996.
39. Hubač I., Mášik J., Mach P., Urban J., Babinec P. in: Computational Chemistry Reviews of Current Trends (J. Leszczynski, Ed.), Vol. 3, p. 1. World Scientific, Singapore 1999.
40. Adv. Quantum Chem. 1999, 31, 75.
< J., Hubač I.: https://doi.org/10.1016/S0065-3276(08)60184-7>
41. Mášik J., Hubač I. in: Quantum Systems in Chemistry and Physics: Trends, Methods and Applications (R. McWeeny, J. Maruani, Y. G. Smeyers and S. Wilson, Eds), p. 283. Kluwer, Dordrecht 1997.
42. J. Chem. Phys. 1999, 110, 10275.
< J., Nachtigall P., Čársky P., Mášik J., Hubač I.: https://doi.org/10.1063/1.478961>
43a. J. Chem. Phys. 2000, 112, 8779.
< I., Pittner J., Čársky P.: https://doi.org/10.1063/1.481493>
43b. J. Chem. Phys. 2003, 118, 10876.
< J.: https://doi.org/10.1063/1.1574785>
44. J. Comput. Chem. 1999, 20, 1559.
< P., Wenzel W.: https://doi.org/10.1002/(SICI)1096-987X(19991115)20:14<1559::AID-JCC9>3.0.CO;2-B>
45. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.
< B., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.24.1668>
46. Chem. Phys. Lett. 1972, 15, 153.
< R. B.: https://doi.org/10.1016/0009-2614(72)80140-4>
47. Int. J. Quantum Chem., Quantum Chem. Symp. 1988, 22, 149.
< R., Shavitt I., Pitzer R. M., Comeau D. C., Pepper M., Lischka H., Szalay P. G., Ahlrichs R., Brown F. B., Zhao J. G.: https://doi.org/10.1002/qua.560340819>
48. Int. J. Quantum Chem. 1974, 8, 61.
< S. R., Davidson E. R.: https://doi.org/10.1002/qua.560080106>
49. Chem. Phys. Lett. 1977, 52, 457.
< W., Shih S., Buenker R. J., Peyerimhoff S. D.: https://doi.org/10.1016/0009-2614(77)80485-5>
50. Chem. Phys. Lett. 1988, 143, 413.
< R., Ahlrichs R.: https://doi.org/10.1016/0009-2614(88)87388-3>
51. J. Chem. Phys. 1995, 103, 3600.
< P., Bartlett R. J.: https://doi.org/10.1063/1.470243>
52. J. Chem. Phys. 1993, 99, 1240.
< J. P., Heully J.-L., Malrieu J. P.: https://doi.org/10.1063/1.465368>
53. Theor. Chim. Acta 1968, 12, 183.
< R. J., Peyerimhoff S. D.: https://doi.org/10.1007/BF00528266>
54. Theor. Chim. Acta 1974, 35, 33.
< R. J., Peyerimhoff S. D.: https://doi.org/10.1007/BF02394557>
55. Theor. Chim. Acta 1975, 39, 217.
< R. J., Peyerimhoff S. D.: https://doi.org/10.1007/BF00555301>
56. Theor. Chim. Acta 1993, 84, 489.
< M., Kovar T., Lischka H., Sheppard R., Harrison R. J.: https://doi.org/10.1007/BF01126612>
57. J. Comput. Chem. 1997, 18, 430.
< H., Lischka H., Sheppard R., Nieplocha J., Harrison R. J.: https://doi.org/10.1002/(SICI)1096-987X(199702)18:3<430::AID-JCC12>3.0.CO;2-M>
58. J. Chem. Phys. 1998, 108, 1015.
< F., Wenzel W.: https://doi.org/10.1063/1.475464>
59. Stanton J. F., Gauss J., Watts J. D., Nooijen M., Oliphant N., Perera S. A., Szalay P. G., Lauderdale W. J., Gwaltney S. R., Beck S., Balková A., Bernhold D. E., Baeck K. K., Rozyczko P., Sekino H., Huber C., Barlett R. J.: ACES II, A Program Product of Quantum Theory Project. University of Florida, Gainesville 1998.
60. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millan J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malik D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Pioskorz P., Komaromi I., Gomperts R., Martin R. L., Fox J., Keith T., Al-Leham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andress J. L., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.6. Gaussian Inc., Pittsburgh (PA) 1998.
61. J. Chem. Phys. 1998, 108, 4714.
< W., Steiner M. M.: https://doi.org/10.1063/1.475921>