Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2003, 68, 265-274
https://doi.org/10.1135/cccc20030265

The Ground State Potential for the Chromium Dimer Revisited

Björn O. Roos

Department of Theoretical Chemistry, Chemical Center, P.O. Box 124, S-221 00 Lund, Sweden

Crossref Cited-by Linking

  • Liao Ke, Ding Lexin, Schilling Christian: Quantum Information Orbitals (QIO): Unveiling Intrinsic Many-Body Complexity by Compressing Single-Body Triviality. J. Phys. Chem. Lett. 2024, 15, 6782. <https://doi.org/10.1021/acs.jpclett.4c01105>
  • Maniar Rohan, Withanage Kushantha P. K., Shahi Chandra, Kaplan Aaron D., Perdew John P., Pederson Mark R.: Symmetry breaking and self-interaction correction in the chromium atom and dimer. The Journal of Chemical Physics 2024, 160. <https://doi.org/10.1063/5.0180863>
  • Battaglia Stefano, Fransén Lina, Fdez. Galván Ignacio, Lindh Roland: Regularized CASPT2: an Intruder-State-Free Approach. J. Chem. Theory Comput. 2022, 18, 4814. <https://doi.org/10.1021/acs.jctc.2c00368>
  • Larsson Henrik R., Zhai Huanchen, Umrigar C. J., Chan Garnet Kin-Lic: The Chromium Dimer: Closing a Chapter of Quantum Chemistry. J. Am. Chem. Soc. 2022, 144, 15932. <https://doi.org/10.1021/jacs.2c06357>
  • Liu Xingman, Zhang Min, Liu Yingtao, Wu Shuixing, Su Zhongmin: A supported Cr–Cr sextuple bond in an all-metal cluster. Dalton Trans. 2022, 51, 2664. <https://doi.org/10.1039/D1DT04360A>
  • Khanna Vaibhav, McGrady John Ewart: Mn2 Dimers Encapsulated in Silicon Cages: A Complex Challenge to MC-SCF Theory. Molecules 2022, 27, 7544. <https://doi.org/10.3390/molecules27217544>
  • Baudhuin Melissa A., Boopalachandran Praveenkumar, Rajan Srijay, Leopold Doreen Geller: A Study of NbMo and NbMo– by Anion Photoelectron Spectroscopy. J. Phys. Chem. A 2021, 125, 9658. <https://doi.org/10.1021/acs.jpca.1c07669>
  • Kollmar Christian, Sivalingam Kantharuban, Neese Frank: An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/5.0010019>
  • Eriksen Janus J., Gauss Jürgen: Generalized Many-Body Expanded Full Configuration Interaction Theory. J. Phys. Chem. Lett. 2019, 10, 7910. <https://doi.org/10.1021/acs.jpclett.9b02968>
  • Duncan Lyngdoh Richard H., Schaefer Henry F., King R. Bruce: Metal–Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc. Chem. Rev. 2018, 118, 11626. <https://doi.org/10.1021/acs.chemrev.8b00297>
  • Luo Zhen, Ma Yingjin, Wang Xicun, Ma Haibo: Externally-Contracted Multireference Configuration Interaction Method Using a DMRG Reference Wave Function. J. Chem. Theory Comput. 2018, 14, 4747. <https://doi.org/10.1021/acs.jctc.8b00613>
  • Li Pengfei, Merz Kenneth M.: Metal Ion Modeling Using Classical Mechanics. Chem. Rev. 2017, 117, 1564. <https://doi.org/10.1021/acs.chemrev.6b00440>
  • Chen Yue, Hasegawa Jun-ya, Yamaguchi Kazuya, Sakaki Shigeyoshi: A coordination strategy to realize a sextuply-bonded complex. Phys. Chem. Chem. Phys. 2017, 19, 14947. <https://doi.org/10.1039/C7CP00871F>
  • Spivak M., Arcisauskaite V., López X., McGrady J. E., de Graaf C.: A multiconfigurational approach to the electronic structure of trichromium extended metal atom chains. Dalton Trans. 2017, 46, 6202. <https://doi.org/10.1039/C7DT01096F>
  • Sokolov Alexander Yu., Guo Sheng, Ronca Enrico, Chan Garnet Kin-Lic: Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes. The Journal of Chemical Physics 2017, 146. <https://doi.org/10.1063/1.4986975>
  • Watson Thomas J., Chan Garnet Kin-Lic: Correct Quantum Chemistry in a Minimal Basis from Effective Hamiltonians. J. Chem. Theory Comput. 2016, 12, 512. <https://doi.org/10.1021/acs.jctc.5b00138>
  • Guo Sheng, Watson Mark A., Hu Weifeng, Sun Qiming, Chan Garnet Kin-Lic: N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene). J. Chem. Theory Comput. 2016, 12, 1583. <https://doi.org/10.1021/acs.jctc.5b01225>
  • Vancoillie Steven, Malmqvist Per Åke, Veryazov Valera: Potential Energy Surface of the Chromium Dimer Re-re-revisited with Multiconfigurational Perturbation Theory. J. Chem. Theory Comput. 2016, 12, 1647. <https://doi.org/10.1021/acs.jctc.6b00034>
  • Veis Libor, Antalík Andrej, Brabec Jiří, Neese Frank, Legeza Örs, Pittner Jiří: Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J. Phys. Chem. Lett. 2016, 7, 4072. <https://doi.org/10.1021/acs.jpclett.6b01908>
  • Sokolov Alexander Yu., Chan Garnet Kin-Lic: A time-dependent formulation of multi-reference perturbation theory. The Journal of Chemical Physics 2016, 144. <https://doi.org/10.1063/1.4941606>
  • Arcisauskaite Vaida, Spivak Mariano, McGrady John E.: Structure and bonding in trimetallic arrays containing a Cr–Cr quadruple bond: A challenge to density functional theory. Inorganica Chimica Acta 2015, 424, 293. <https://doi.org/10.1016/j.ica.2014.08.061>
  • Olivares-Amaya Roberto, Hu Weifeng, Nakatani Naoki, Sharma Sandeep, Yang Jun, Chan Garnet Kin-Lic: The ab-initio density matrix renormalization group in practice. The Journal of Chemical Physics 2015, 142. <https://doi.org/10.1063/1.4905329>
  • Purwanto Wirawan, Zhang Shiwei, Krakauer Henry: An auxiliary-field quantum Monte Carlo study of the chromium dimer. The Journal of Chemical Physics 2015, 142. <https://doi.org/10.1063/1.4906829>
  • Würdemann Rolf, Kristoffersen Henrik H., Moseler Michael, Walter Michael: Density functional theory and chromium: Insights from the dimers. The Journal of Chemical Physics 2015, 142. <https://doi.org/10.1063/1.4915265>
  • Keller Sebastian, Boguslawski Katharina, Janowski Tomasz, Reiher Markus, Pulay Peter: Selection of active spaces for multiconfigurational wavefunctions. The Journal of Chemical Physics 2015, 142. <https://doi.org/10.1063/1.4922352>
  • Veeraraghavan Srikant, Mazziotti David A.: Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4868242>
  • Li Manni Giovanni, Ma Dongxia, Aquilante Francesco, Olsen Jeppe, Gagliardi Laura: SplitGAS Method for Strong Correlation and the Challenging Case of Cr2. J. Chem. Theory Comput. 2013, 9, 3375. <https://doi.org/10.1021/ct400046n>
  • Ruipérez Fernando, Merino Gabriel, Ugalde Jesus M., Infante Ivan: Molecules with High Bond Orders and Ultrashort Bond Lengths: CrU, MoU, and WU. Inorg. Chem. 2013, 52, 2838. <https://doi.org/10.1021/ic301657c>
  • Ruipérez F., Piris M., Ugalde J. M., Matxain J. M.: The natural orbital functional theory of the bonding in Cr2, Mo2 and W2. Phys. Chem. Chem. Phys. 2013, 15, 2055. <https://doi.org/10.1039/C2CP43559D>
  • Li Manni Giovanni, Dzubak Allison L., Mulla Abbas, Brogden David W., Berry John F., Gagliardi Laura: Assessing Metal–Metal Multiple Bonds in CrCr, MoMo, and WW Compounds and a Hypothetical UU Compound: A Quantum Chemical Study Comparing DFT and Multireference Methods. Chemistry A European J 2012, 18, 1737. <https://doi.org/10.1002/chem.201103096>
  • Tamukong Patrick K., Theis Daniel, Khait Yuriy G., Hoffmann Mark R.: GVVPT2 Multireference Perturbation Theory Description of Diatomic Scandium, Chromium, and Manganese. J. Phys. Chem. A 2012, 116, 4590. <https://doi.org/10.1021/jp300401u>
  • Sharma Sandeep, Chan Garnet Kin-Lic: Spin-adapted density matrix renormalization group algorithms for quantum chemistry. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3695642>
  • Cheskidov Alexander V., Buchachenko Alexei A., Bezrukov Dmitry S.: Ab initio spin-orbit calculations on the lowest states of the nickel dimer. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.4721624>
  • Gagliardi Laura: The study of actinide chemistry with multiconfigurational quantum chemical methods. Int J of Quantum Chemistry 2011, 111, 3302. <https://doi.org/10.1002/qua.22992>
  • Pierloot K.: Transition metals compounds: Outstanding challenges for multiconfigurational methods. Int J of Quantum Chemistry 2011, 111, 3291. <https://doi.org/10.1002/qua.23029>
  • Pulay Peter: A perspective on the CASPT2 method. Int J of Quantum Chemistry 2011, 111, 3273. <https://doi.org/10.1002/qua.23052>
  • Ruipérez Fernando, Aquilante Francesco, Ugalde Jesus M., Infante Ivan: Complete vs Restricted Active Space Perturbation Theory Calculation of the Cr2 Potential Energy Surface. J. Chem. Theory Comput. 2011, 7, 1640. <https://doi.org/10.1021/ct200048z>
  • Ruipérez Fernando, Ugalde Jesus M., Infante Ivan: Electronic Structure and Bonding in Heteronuclear Dimers of V, Cr, Mo, and W: a CASSCF/CASPT2 Study. Inorg. Chem. 2011, 50, 9219. <https://doi.org/10.1021/ic200061h>
  • Kurashige Yuki, Yanai Takeshi: Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: Theory and application to the study of chromium dimer. The Journal of Chemical Physics 2011, 135. <https://doi.org/10.1063/1.3629454>
  • Siegbahn Per E. M., Blomberg Margareta R. A.: Bond‐dissociation using hybrid DFT. Int J of Quantum Chemistry 2010, 110, 317. <https://doi.org/10.1002/qua.22204>
  • Iliaš Miroslav, Kellö Vladimír, Urban Miroslav: Relativistic effects in atomic and molecular properties. Acta Physica Slovaca Reviews and Tutorials 2010, 60, 259. <https://doi.org/10.2478/v10155-010-0003-1>
  • Noor Awal, Glatz Germund, Müller Robert, Kaupp Martin, Demeshko Serhiy, Kempe Rhett: Metal–Metal Distances at the Limit: Cr–Cr 1.73 Å – the Importance of the Ligand and its Fine Tuning. Zeitschrift anorg allge chemie 2009, 635, 1149. <https://doi.org/10.1002/zaac.200900175>
  • Brynda Marcin, Gagliardi Laura, Roos Björn O.: Analysing the chromium–chromium multiple bonds using multiconfigurational quantum chemistry. Chemical Physics Letters 2009, 471, 1. <https://doi.org/10.1016/j.cplett.2009.02.006>
  • Mitoraj Mariusz P., Michalak Artur, Ziegler Tom: A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962. <https://doi.org/10.1021/ct800503d>
  • Müller Thomas: Large-Scale Parallel Uncontracted Multireference-Averaged Quadratic Coupled Cluster: The Ground State of the Chromium Dimer Revisited. J. Phys. Chem. A 2009, 113, 12729. <https://doi.org/10.1021/jp905254u>
  • Wagner Frank R., Noor Awal, Kempe Rhett: Ultrashort metal–metal distances and extreme bond orders. Nature Chem 2009, 1, 529. <https://doi.org/10.1038/nchem.359>
  • Borin Antonio Carlos, Paulo Gobbo João, Roos Björn O.: Electronic structure and chemical bonding in the ground states of Tc2 and Re2. Molecular Physics 2009, 107, 1035. <https://doi.org/10.1080/00268970802712555>
  • Borin Antonio Carlos, Gobbo João Paulo, Roos Björn O.: A theoretical study of the binding and electronic spectrum of the Mo2 molecule. Chemical Phys 2008, 343, 210. <https://doi.org/10.1016/j.chemphys.2007.05.028>
  • La Macchia Giovanni, Gagliardi Laura, Power Philip P., Brynda Marcin: Large Differences in Secondary Metal−Arene Interactions in the Transition-Metal Dimers ArMMAr (Ar = Terphenyl; M = Cr, Fe, or Co): Implications for Cr−Cr Quintuple Bonding. J. Am. Chem. Soc. 2008, 130, 5104. <https://doi.org/10.1021/ja0771890>
  • Camacho Cristopher, Yamamoto Shigeyoshi, Witek Henryk A.: Choosing a proper complete active space in calculations for transition metal dimers: ground state of Mn2 revisited. Phys. Chem. Chem. Phys. 2008, 10, 5128. <https://doi.org/10.1039/b805125a>
  • Merino Gabriel, Donald Kelling J., D'Acchioli Jason S., Hoffmann Roald: The Many Ways To Have a Quintuple Bond. J. Am. Chem. Soc. 2007, 129, 15295. <https://doi.org/10.1021/ja075454b>
  • Kreisel Kevin A., Yap Glenn P. A., Dmitrenko Olga, Landis Clark R., Theopold Klaus H.: The Shortest Metal−Metal Bond Yet:  Molecular and Electronic Structure of a Dinuclear Chromium Diazadiene Complex. J. Am. Chem. Soc. 2007, 129, 14162. <https://doi.org/10.1021/ja076356t>
  • Radius Udo, Breher Frank: Hinter dem Horizont der Metall‐Metall‐Vierfachbindung. Angewandte Chemie 2006, 118, 3072. <https://doi.org/10.1002/ange.200504322>
  • Brynda Marcin, Gagliardi Laura, Widmark Per‐Olof, Power Philip P., Roos Björn O.: A Quantum Chemical Study of the Quintuple Bond between Two Chromium Centers in [PhCrCrPh]: trans‐Bent versus Linear Geometry. Angewandte Chemie 2006, 118, 3888. <https://doi.org/10.1002/ange.200600110>
  • Radius Udo, Breher Frank: To Boldly Pass the Metal–Metal Quadruple Bond. Angew Chem Int Ed 2006, 45, 3006. <https://doi.org/10.1002/anie.200504322>
  • Brynda Marcin, Gagliardi Laura, Widmark Per‐Olof, Power Philip P., Roos Björn O.: A Quantum Chemical Study of the Quintuple Bond between Two Chromium Centers in [PhCrCrPh]: trans‐Bent versus Linear Geometry. Angew Chem Int Ed 2006, 45, 3804. <https://doi.org/10.1002/anie.200600110>
  • Gagliardi Laura: Prediction of new inorganic molecules with quantum chemical methods. Theor Chem Acc 2006, 116, 307. <https://doi.org/10.1007/s00214-005-0031-y>
  • Landis Clark R., Weinhold Frank: Origin of Trans-Bent Geometries in Maximally Bonded Transition Metal and Main Group Molecules. J. Am. Chem. Soc. 2006, 128, 7335. <https://doi.org/10.1021/ja060992u>
  • Azizi Zahra, Roos Bj?rn O., Veryazov Valera: How accurate is the CASPT2 method?. Phys. Chem. Chem. Phys. 2006, 8, 2727. <https://doi.org/10.1039/b603046g>
  • Angeli Celestino, Bories Benoît, Cavallini Alex, Cimiraglia Renzo: Third-order multireference perturbation theory: The n-electron valence state perturbation-theory approach. The Journal of Chemical Physics 2006, 124. <https://doi.org/10.1063/1.2148946>
  • Ferrante Francesco, Gagliardi Laura, Bursten Bruce E., Sattelberger Alfred P.: Multiconfigurational Theoretical Study of the Octamethyldimetalates of Cr(II), Mo(II), W(II), and Re(III):  Revisiting the Correlation between the M−M Bond Length and the δ → δ* Transition Energy. Inorg. Chem. 2005, 44, 8476. <https://doi.org/10.1021/ic050406i>
  • Schultz Nathan E., Zhao Yan, Truhlar Donald G.: Databases for Transition Element Bonding:  Metal−Metal Bond Energies and Bond Lengths and Their Use To Test Hybrid, Hybrid Meta, and Meta Density Functionals and Generalized Gradient Approximations. J. Phys. Chem. A 2005, 109, 4388. <https://doi.org/10.1021/jp0504468>
  • Gagliardi Laura, Roos Björn O.: Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 2005, 433, 848. <https://doi.org/10.1038/nature03249>
  • Nguyen Tailuan, Sutton Andrew D., Brynda Marcin, Fettinger James C., Long Gary J., Power Philip P.: Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. Science 2005, 310, 844. <https://doi.org/10.1126/science.1116789>
  • Boudreaux E. A., Baxter E.: More QR‐SCMEH‐MO calculations on group VIB transition metal molecules, M2 (M = Cr, Mo, W, Sg): Valence and valence‐core effects. Int J of Quantum Chemistry 2004, 100, 1170. <https://doi.org/10.1002/qua.20254>
  • Celani P., Stoll H., Werner H.-J., Knowles * P.J.: The CIPT2 method: Coupling of multi-reference configuration interaction and multi-reference perturbation theory. Application to the chromium dimer. Mole Phys 2004, 102, 2369. <https://doi.org/10.1080/00268970412331317788>
  • Pavlović Zoran, Roos Björn O., Côté Robin, Sadeghpour H. R.: Collisional properties of trapped cold chromium atoms. Phys. Rev. A 2004, 69. <https://doi.org/10.1103/PhysRevA.69.030701>
  • Li Se, Richardson Nancy A., King R. Bruce, Schaefer Henry F.: Chromium−Chromium Multiple Bonding in Cr2(CO)9. J. Phys. Chem. A 2003, 107, 10118. <https://doi.org/10.1021/jp030804b>