Collect. Czech. Chem. Commun. 2003, 68, 275-294
https://doi.org/10.1135/cccc20030275

Dirac-Coulomb Hamiltonian in N-Electron Model Spaces

Grzegorz Pestka and Jacek Karwowski*

Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń, Poland

References

1. McWeeny R. in: Methods in Computational Molecular Physics (S. Wilson and G. H. F. Diercksen, Eds), p. 3. Plenum, New York 1992.
2. Pauncz R.: The Symmetric Group in Quantum Chemistry. CRC Press, Boca Raton (FL) 1995.
3. Paldus J. in: Theoretical Chemistry. Advances and Perspectives (H. Eyring and D. Henderson, Eds), Vol. 2, p. 131. Academic Press, New York 1976.
4. Duch W., Karwowski J.: Comput. Phys. Rep. 1985, 2, 94. <https://doi.org/10.1016/0167-7977(85)90001-2>
5. Duch W.: Lect. Notes in Chem. 1986, 42.
6. Grant I. P. in: Atomic, Molecular and Optical Physics Handbook (G. W. F. Drake, Ed.), p. 287. AIP Press, New York 1996.
7. Dyall K. G.: J. Chem. Phys. 1994, 100, 2118. <https://doi.org/10.1063/1.466508>
8. Jensen H. J. Aa., Dyall K. G., Saue T., Faegri K., Jr.: J. Chem. Phys. 1996, 104, 4083. <https://doi.org/10.1063/1.471644>
9. Fleig T., Olsen J., Marian C. M.: J. Chem. Phys. 2001, 114, 4775. <https://doi.org/10.1063/1.1349076>
10. Moshinsky M., Sharma A.: J. Phys. A: Math. Gen. 1998, 31, 397. <https://doi.org/10.1088/0305-4470/31/1/033>
11. This name has been selected because in the standard representation of the Dirac equation the first two components of the free-particle solution are, for small momenta, much larger than the remaining two. In this paper, in all formulas, we use the standard representation. However, the general formulation is valid for all representations.
12. Karwowski J.: J. Mol. Struct. (THEOCHEM) 2001, 547, 245. <https://doi.org/10.1016/S0166-1280(01)00474-2>
13a. Wożnicki W. in: Theory of Electronic Shell in Atoms and Molecules (A. Jucys, Ed.), p. 103. Mintis, Vilnius 1971.
13b. Sims J. S., Hagstrom S. A.: Phys. Rev. A: At., Mol., Opt. Phys. 1971, 4, 908. <https://doi.org/10.1103/PhysRevA.4.908>
13c. Kutzelnigg W.: Theor. Chim. Acta 1985, 68, 445. <https://doi.org/10.1007/BF00527669>
14. The resulting equation is known as Lévy-Leblond equation.
14a. Léevy-Leblond J. M.: Commun. Math. Phys. 1967, 6, 286. <https://doi.org/10.1007/BF01646020>
14b. Karwowski J., Pestka G., Stanke M. in: Quantum Systems in Chemistry and Physics (A. Hernandez-Laguna et al., Eds), Vol. I, p. 179. Kluwer Academic Publishers, Lancaster 2000.
15a. Flocke N., Barysz M., Karwowski J., Diercksen G. H. F.: Int. J. Quantum Chem. 1997, 61, 1. <https://doi.org/10.1002/(SICI)1097-461X(1997)61:1<1::AID-QUA1>3.0.CO;2-#>
15b. Flocke N., Barysz M., Karwowski J., Diercksen G. H. F.: Int. J. Quantum Chem. 1997, 61, 11. <https://doi.org/10.1002/(SICI)1097-461X(1997)61:1<11::AID-QUA2>3.0.CO;2-7>
15c. Flocke N., Barysz M., Karwowski J., Diercksen G. H. F.: Int. J. Quantum Chem. 1997, 61, 21. <https://doi.org/10.1002/(SICI)1097-461X(1997)61:1<21::AID-QUA3>3.0.CO;2-6>
16. Pauncz R.: Spin Eigenfunctions. Plenum, New York 1979.
17a. Karwowski J.: Chem. Phys. Lett. 1973, 19, 279. <https://doi.org/10.1016/0009-2614(73)85074-2>
17b. Karwowski J.: Acta Phys. Pol., A 1973, 48, 553.
18. Pestka G., Karwowski J. in: Symmetry and Structural Properties of Condensed Matter (T. Lulek, B. Lulek and A. Wal, Eds), p. 111. World Scientific, Singapore 2001.