Collect. Czech. Chem. Commun.
2003, 68, 331-339
https://doi.org/10.1135/cccc20030331
Optimized Quasiparticle Energies in Many-Body Perturbation Theory
Peter R. Surján*, Dóra Kőhalmi and Ágnes Szabados
Department of Theoretical Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
Crossref Cited-by Linking
- Gombás András, Surján Péter R., Szabados Ágnes: Analysis and Assessment of Knowles’ Partitioning in Many-Body Perturbation Theory. J. Chem. Theory Comput. 2024, 20, 5094. <https://doi.org/10.1021/acs.jctc.4c00166>
- Surján Péter R., Szabados Ágnes: Many-Body Perturbation Theory with Localized Orbitals: Accounting for Localization Diagrams as Integral Dressing. J. Chem. Theory Comput. 2022, 18, 2955. <https://doi.org/10.1021/acs.jctc.2c00120>
- Surján Péter R., Kőhalmi Dóra, Szabados Ágnes: A note on perturbation-adapted perturbation theory. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0085350>
- Rolik Zoltán, Szabados Ágnes: Multipartitioning Møller–Plesset perturbation theory: Size‐extensivity at third order and symmetry conservation. Int J of Quantum Chemistry 2009, 109, 2554. <https://doi.org/10.1002/qua.22059>
- Mochizuki Yuji: Application of Dyson-corrected second-order perturbation theories. Chemical Physics Letters 2009, 472, 143. <https://doi.org/10.1016/j.cplett.2009.02.075>
- Surján P.R., Rolik Z., Szabados Á., Köhalmi D.: Partitioning in multiconfiguration perturbation theory. Annalen der Physik 2004, 516, 223. <https://doi.org/10.1002/andp.20045160406>
- Surján Peter R., Szabados Ágnes: Convergence Enhancement in Perturbation Theory. Collect. Czech. Chem. Commun. 2004, 69, 105. <https://doi.org/10.1135/cccc20040105>