Collect. Czech. Chem. Commun.
2003, 68, 423-446
https://doi.org/10.1135/cccc20030423
Density Functional Study of the Electronic Structure and Related Properties of Pt(NO)/Pt(NO2) Redox Couples
Paraskevas Karipidis, Athanassios C. Tsipis and Constantinos A. Tsipis*
Laboratory of Applied Quantum Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece
References
1a. F.: Angew. Chem., Int. Ed. Engl. 1999, 38, 1856.
<https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1856::AID-ANIE1856>3.0.CO;2-D>
1b. R. F.: Angew. Chem., Int. Ed. Engl. 1999, 38, 1870.
<https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1870::AID-ANIE1870>3.0.CO;2-8>
1c. L. J.: Angew. Chem., Int. Ed. Engl. 1999, 38, 1882.
<https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1882::AID-ANIE1882>3.0.CO;2-V>
2a. Feelisch M., Stamler J. S. (Eds): Methods in Nitric Oxide Research. Wiley, Chichester (U.K.) 1996.
2b. Ignaro L. J. (Ed.): Nitric Oxide. Academic Press, Orlando (FL) 2000.
2c. D. N. R., Cederbaum A. I.: Arch. Biochem. Biophys. 1995, 321, 363.
<https://doi.org/10.1006/abbi.1995.1406>
2d. Fang F. C. (Ed.): Nitric Oxide and Infection, Vol. 1 and the following. Kluver Academic/Plenum Publishers, New York 1997.
3a. S., Palmer R. M. J., Higgs E. A.: Pharmacol. Rev. 1991, 43, 109.
3b. P. L., Griffith O. W., Stuehr D. J.: Chem. Eng. News 1993, 71, 26.
3c. A. R., Williams D. L. H.: Chem. Soc. Rev. 1993, 22, 223.
<https://doi.org/10.1039/cs9932200233>
4. T., Honda J., Nagamune T., Sasabe H., Inoue Y., Endo I.: FEBS Lett. 1995, 358, 9.
<https://doi.org/10.1016/0014-5793(94)01374-A>
5. M. W. J., Cooper J. M., Darley-Usmar V. M., Moncada S., Scapira H. V.: FEBS Lett. 1994, 345, 50.
<https://doi.org/10.1016/0014-5793(94)00424-2>
6a. J. B., Rees D. C.: Chem. Rev. (Washington, D. C.) 1996, 96, 2965.
<https://doi.org/10.1021/cr9500545>
6b. B. K., Lowe D. J.: Chem. Rev. (Washington, D. C.) 1996, 96, 2983.
<https://doi.org/10.1021/cr950055x>
6c. R. R.: Chem. Rev. (Washington, D. C.) 1996, 96, 3013.
<https://doi.org/10.1021/cr950057h>
7a. V., van Eldik R.: Inorg. Chem. 1990, 29, 4462.
<https://doi.org/10.1021/ic00347a026>
7b. E. K., Chang S. G.: Nature 1994, 369, 139.
<https://doi.org/10.1038/369139a0>
8. R. A., Miller J. A.: J. Chem. Kinet. 1996, 28, 217.
<https://doi.org/10.1002/(SICI)1097-4601(1996)28:3<217::AID-KIN7>3.0.CO;2-Y>
9. O., Loenders R., Jacobs P. A., Martens J. A.: Appl. Catal., B 1999, 21, 215.
<https://doi.org/10.1016/S0926-3373(99)00025-9>
10a. P., Novozhilova I., Kovalensky A.: Chem. Rev. 2002, 102, 861.
<https://doi.org/10.1021/cr000031c>
10b. L., Citra A.: Chem. Rev. 2002, 102, 885.
<https://doi.org/10.1021/cr0000729>
10c. J., Larkworthy L. F., Moore E.: Chem. Rev. 2002, 102, 913.
<https://doi.org/10.1021/cr000075l>
10d. T. W., Legzdins P., Sharp W. B.: Chem. Rev. 2002, 102, 935.
<https://doi.org/10.1021/cr000074t>
10e. P. C., Lorkovic I. M.: Chem. Rev. 2002, 102, 993.
<https://doi.org/10.1021/cr0000271>
11a. C. K., Nemetz T. M., Ball D. W.: J. Mol. Struct. (THEOCHEM) 1996, 384, 101.
<https://doi.org/10.1016/S0022-2860(96)09342-8>
11b. C. K., Ball D. W.: High Temp. Mater. Sci. (THEOCHEM) 1997, 37, 63.
12. J. L. C., Bauschlicher C. W., Jr., Hall M.: J. Phys. Chem. A 1997, 101, 8530.
<https://doi.org/10.1021/jp9714936>
13. C., Duarte H. A., Salahub D. R.: J. Chem. Phys. 1997, 106, 8778.
<https://doi.org/10.1063/1.473938>
14. A., Iwata S.: J. Chem. Phys. 1998, 102, 3618.
<https://doi.org/10.1021/jp980523h>
15a. L., Zhou M., Ball D. W.: J. Phys. Chem. A 1998, 102, 10041.
<https://doi.org/10.1021/jp983235u>
15b. G. P., Zhou M., Andrews L. E., Bauschlicher C. W., Jr.: J. Phys. Chem. A 1999, 103, 1115.
<https://doi.org/10.1021/jp9838036>
15c. L., Zhou M.: Chem. Phys. 2000, 256, 185.
<https://doi.org/10.1016/S0301-0104(00)00103-8>
16. L., Manceron L., Alikhani M. E.: J. Phys. Chem. A 1999, 103, 2592.
<https://doi.org/10.1021/jp984352s>
17. E., Ball D. W.: J. Mol. Struct. (THEOCHEM) 2001, 542, 149.
<https://doi.org/10.1016/S0166-1280(00)00832-0>
18. S.: J. Mol. Struct. (THEOCHEM) 2001, 574, 127.
<https://doi.org/10.1016/S0166-1280(01)00642-X>
19. C. W., Jr., Bagus P. S.: J. Chem. Phys. 1984, 80, 944.
<https://doi.org/10.1063/1.446752>
20. H.: Chem. Phys. Lett. 1985, 116, 58.
<https://doi.org/10.1016/0009-2614(85)80125-1>
21. G. W., Carter E. A.: J. Phys. Chem. 1991, 95, 2327.
<https://doi.org/10.1021/j100159a040>
22. J., Koch W., Schwarz H.: J. Chem. Phys. 1994, 101, 3898.
<https://doi.org/10.1063/1.467507>
23a. A. D.: Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
<https://doi.org/10.1103/PhysRevA.38.3098>
23b. S. H., Wilk L., Nussair M.: Can. J. Phys. 1980, 58, 1200.
<https://doi.org/10.1139/p80-159>
23c. A. D.: J. Chem. Phys. 1993, 98, 5648.
<https://doi.org/10.1063/1.464913>
24. C., Yang W., Parr R. G.: Phys. Rev. B: Condens. Matter 1988, 37, 785.
<https://doi.org/10.1103/PhysRevB.37.785>
25. W. R., Hay P. J.: J. Chem. Phys. 1985, 82, 5284.
<https://doi.org/10.1063/1.448800>
26. W. J., Basch H., Kraus M.: J. Chem. Phys. 1984, 81, 6026.
<https://doi.org/10.1063/1.447604>
27. W. J., Kraus M., Basch H., Jasien P. G.: Can. J. Chem. 1992, 70, 612.
<https://doi.org/10.1139/v92-085>
28. T. J., Stevens W. J.: J. Chem. Phys. 1993, 98, 5555.
<https://doi.org/10.1063/1.464902>
29a. J. B.: Top. Catal. 1997, 4, 157.
<https://doi.org/10.1023/A:1019179903977>
29b. W. R., Hertwing H.: Chem. Phys. Lett. 1997, 286, 345.
29c. L. A., Raghavachari K., Redfern P. C., Pople J. A.: Chem. Phys. Lett. 1997, 270, 419.
<https://doi.org/10.1016/S0009-2614(97)00399-0>
29d. D. M., Golding B. T., Radom L.: J. Am. Chem. Soc. 1999, 121, 9388.
<https://doi.org/10.1021/ja991649a>
29e. A. K., Nguyen M. T.: Chem. Phys. 1998, 232, 299.
<https://doi.org/10.1016/S0301-0104(98)00111-6>
29f. J. B.: Top. Catal. 1999, 9, 181.
<https://doi.org/10.1023/A:1019135227543>
29g. R., Adamo C., Cossi M., Millet A., Vallé Y., Barone V.: J. Am. Chem. Soc. 2000, 122, 324.
<https://doi.org/10.1021/ja9911059>
30. H. B.: J. Comput. Chem. 1982, 3, 214.
<https://doi.org/10.1002/jcc.540030212>
31. Frisch M. J., Trucks G. W., Schlegel H. B., Scusseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millan J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Orchterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaroni I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M., Johnson P., Chen W., Wong M. W., Andres J. L., Head-Gordon M., Replogle E. S., Pople J. A.: GAUSSIAN98, Revision A.7. Gaussian Inc., Pittsburgh (PA) 1998.
32. ChemOffice 97. Cambridge Scientific Computing, Inc., 875 Massachusetts Ave., Suite 41, Cambridge, MA 02139, U.S.A.
33. Huber K., Herzberg G.: Constants of Diatomic Molecules. Van Nostrand Reinhold Co., New York 1979.
34. S. P., Goddard W. A., III: Chem. Phys. Lett. 1975, 33, 18.
<https://doi.org/10.1016/0009-2614(75)85444-3>
35. A., Andrews L.: J. Phys. Chem. A 2000, 104, 8160.
<https://doi.org/10.1021/jp000796o>
36. M. F., Andrews L.: J. Phys. Chem. A 2000, 104, 3915.
<https://doi.org/10.1021/jp993340j>

