Collect. Czech. Chem. Commun.
2003, 68, 423-446
https://doi.org/10.1135/cccc20030423
Density Functional Study of the Electronic Structure and Related Properties of Pt(NO)/Pt(NO2) Redox Couples
Paraskevas Karipidis, Athanassios C. Tsipis and Constantinos A. Tsipis*
Laboratory of Applied Quantum Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece
References
1a. Angew. Chem., Int. Ed. Engl. 1999, 38, 1856.
< F.: https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1856::AID-ANIE1856>3.0.CO;2-D>
1b. Angew. Chem., Int. Ed. Engl. 1999, 38, 1870.
< R. F.: https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1870::AID-ANIE1870>3.0.CO;2-8>
1c. Angew. Chem., Int. Ed. Engl. 1999, 38, 1882.
< L. J.: https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1882::AID-ANIE1882>3.0.CO;2-V>
2a. Feelisch M., Stamler J. S. (Eds): Methods in Nitric Oxide Research. Wiley, Chichester (U.K.) 1996.
2b. Ignaro L. J. (Ed.): Nitric Oxide. Academic Press, Orlando (FL) 2000.
2c. Arch. Biochem. Biophys. 1995, 321, 363.
< D. N. R., Cederbaum A. I.: https://doi.org/10.1006/abbi.1995.1406>
2d. Fang F. C. (Ed.): Nitric Oxide and Infection, Vol. 1 and the following. Kluver Academic/Plenum Publishers, New York 1997.
3a. Pharmacol. Rev. 1991, 43, 109.
S., Palmer R. M. J., Higgs E. A.:
3b. Chem. Eng. News 1993, 71, 26.
P. L., Griffith O. W., Stuehr D. J.:
3c. Chem. Soc. Rev. 1993, 22, 223.
< A. R., Williams D. L. H.: https://doi.org/10.1039/cs9932200233>
4. FEBS Lett. 1995, 358, 9.
< T., Honda J., Nagamune T., Sasabe H., Inoue Y., Endo I.: https://doi.org/10.1016/0014-5793(94)01374-A>
5. FEBS Lett. 1994, 345, 50.
< M. W. J., Cooper J. M., Darley-Usmar V. M., Moncada S., Scapira H. V.: https://doi.org/10.1016/0014-5793(94)00424-2>
6a. Chem. Rev. (Washington, D. C.) 1996, 96, 2965.
< J. B., Rees D. C.: https://doi.org/10.1021/cr9500545>
6b. Chem. Rev. (Washington, D. C.) 1996, 96, 2983.
< B. K., Lowe D. J.: https://doi.org/10.1021/cr950055x>
6c. Chem. Rev. (Washington, D. C.) 1996, 96, 3013.
< R. R.: https://doi.org/10.1021/cr950057h>
7a. Inorg. Chem. 1990, 29, 4462.
< V., van Eldik R.: https://doi.org/10.1021/ic00347a026>
7b. Nature 1994, 369, 139.
< E. K., Chang S. G.: https://doi.org/10.1038/369139a0>
8. J. Chem. Kinet. 1996, 28, 217.
< R. A., Miller J. A.: https://doi.org/10.1002/(SICI)1097-4601(1996)28:3<217::AID-KIN7>3.0.CO;2-Y>
9. Appl. Catal., B 1999, 21, 215.
< O., Loenders R., Jacobs P. A., Martens J. A.: https://doi.org/10.1016/S0926-3373(99)00025-9>
10a. Chem. Rev. 2002, 102, 861.
< P., Novozhilova I., Kovalensky A.: https://doi.org/10.1021/cr000031c>
10b. Chem. Rev. 2002, 102, 885.
< L., Citra A.: https://doi.org/10.1021/cr0000729>
10c. Chem. Rev. 2002, 102, 913.
< J., Larkworthy L. F., Moore E.: https://doi.org/10.1021/cr000075l>
10d. Chem. Rev. 2002, 102, 935.
< T. W., Legzdins P., Sharp W. B.: https://doi.org/10.1021/cr000074t>
10e. Chem. Rev. 2002, 102, 993.
< P. C., Lorkovic I. M.: https://doi.org/10.1021/cr0000271>
11a. J. Mol. Struct. (THEOCHEM) 1996, 384, 101.
< C. K., Nemetz T. M., Ball D. W.: https://doi.org/10.1016/S0022-2860(96)09342-8>
11b. High Temp. Mater. Sci. (THEOCHEM) 1997, 37, 63.
C. K., Ball D. W.:
12. J. Phys. Chem. A 1997, 101, 8530.
< J. L. C., Bauschlicher C. W., Jr., Hall M.: https://doi.org/10.1021/jp9714936>
13. J. Chem. Phys. 1997, 106, 8778.
< C., Duarte H. A., Salahub D. R.: https://doi.org/10.1063/1.473938>
14. J. Chem. Phys. 1998, 102, 3618.
< A., Iwata S.: https://doi.org/10.1021/jp980523h>
15a. J. Phys. Chem. A 1998, 102, 10041.
< L., Zhou M., Ball D. W.: https://doi.org/10.1021/jp983235u>
15b. J. Phys. Chem. A 1999, 103, 1115.
< G. P., Zhou M., Andrews L. E., Bauschlicher C. W., Jr.: https://doi.org/10.1021/jp9838036>
15c. Chem. Phys. 2000, 256, 185.
< L., Zhou M.: https://doi.org/10.1016/S0301-0104(00)00103-8>
16. J. Phys. Chem. A 1999, 103, 2592.
< L., Manceron L., Alikhani M. E.: https://doi.org/10.1021/jp984352s>
17. J. Mol. Struct. (THEOCHEM) 2001, 542, 149.
< E., Ball D. W.: https://doi.org/10.1016/S0166-1280(00)00832-0>
18. J. Mol. Struct. (THEOCHEM) 2001, 574, 127.
< S.: https://doi.org/10.1016/S0166-1280(01)00642-X>
19. J. Chem. Phys. 1984, 80, 944.
< C. W., Jr., Bagus P. S.: https://doi.org/10.1063/1.446752>
20. Chem. Phys. Lett. 1985, 116, 58.
< H.: https://doi.org/10.1016/0009-2614(85)80125-1>
21. J. Phys. Chem. 1991, 95, 2327.
< G. W., Carter E. A.: https://doi.org/10.1021/j100159a040>
22. J. Chem. Phys. 1994, 101, 3898.
< J., Koch W., Schwarz H.: https://doi.org/10.1063/1.467507>
23a. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
< A. D.: https://doi.org/10.1103/PhysRevA.38.3098>
23b. Can. J. Phys. 1980, 58, 1200.
< S. H., Wilk L., Nussair M.: https://doi.org/10.1139/p80-159>
23c. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
24. Phys. Rev. B: Condens. Matter 1988, 37, 785.
< C., Yang W., Parr R. G.: https://doi.org/10.1103/PhysRevB.37.785>
25. J. Chem. Phys. 1985, 82, 5284.
< W. R., Hay P. J.: https://doi.org/10.1063/1.448800>
26. J. Chem. Phys. 1984, 81, 6026.
< W. J., Basch H., Kraus M.: https://doi.org/10.1063/1.447604>
27. Can. J. Chem. 1992, 70, 612.
< W. J., Kraus M., Basch H., Jasien P. G.: https://doi.org/10.1139/v92-085>
28. J. Chem. Phys. 1993, 98, 5555.
< T. J., Stevens W. J.: https://doi.org/10.1063/1.464902>
29a. Top. Catal. 1997, 4, 157.
< J. B.: https://doi.org/10.1023/A:1019179903977>
29b. Chem. Phys. Lett. 1997, 286, 345.
W. R., Hertwing H.:
29c. Chem. Phys. Lett. 1997, 270, 419.
< L. A., Raghavachari K., Redfern P. C., Pople J. A.: https://doi.org/10.1016/S0009-2614(97)00399-0>
29d. J. Am. Chem. Soc. 1999, 121, 9388.
< D. M., Golding B. T., Radom L.: https://doi.org/10.1021/ja991649a>
29e. Chem. Phys. 1998, 232, 299.
< A. K., Nguyen M. T.: https://doi.org/10.1016/S0301-0104(98)00111-6>
29f. Top. Catal. 1999, 9, 181.
< J. B.: https://doi.org/10.1023/A:1019135227543>
29g. J. Am. Chem. Soc. 2000, 122, 324.
< R., Adamo C., Cossi M., Millet A., Vallé Y., Barone V.: https://doi.org/10.1021/ja9911059>
30. J. Comput. Chem. 1982, 3, 214.
< H. B.: https://doi.org/10.1002/jcc.540030212>
31. Frisch M. J., Trucks G. W., Schlegel H. B., Scusseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millan J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Orchterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaroni I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M., Johnson P., Chen W., Wong M. W., Andres J. L., Head-Gordon M., Replogle E. S., Pople J. A.: GAUSSIAN98, Revision A.7. Gaussian Inc., Pittsburgh (PA) 1998.
32. ChemOffice 97. Cambridge Scientific Computing, Inc., 875 Massachusetts Ave., Suite 41, Cambridge, MA 02139, U.S.A.
33. Huber K., Herzberg G.: Constants of Diatomic Molecules. Van Nostrand Reinhold Co., New York 1979.
34. Chem. Phys. Lett. 1975, 33, 18.
< S. P., Goddard W. A., III: https://doi.org/10.1016/0009-2614(75)85444-3>
35. J. Phys. Chem. A 2000, 104, 8160.
< A., Andrews L.: https://doi.org/10.1021/jp000796o>
36. J. Phys. Chem. A 2000, 104, 3915.
< M. F., Andrews L.: https://doi.org/10.1021/jp993340j>