Collect. Czech. Chem. Commun.
2003, 68, 644-662
https://doi.org/10.1135/cccc20030644
A Proposed Mechanism of [closo-CB11H12]- Formation by Dichlorocarbene Insertion Into [nido-B11H14]-. A Computational Study by Density Functional Theory
Pawel Rempala and Josef Michl*
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, U.S.A.
References
1. S. H.: Chem. Rev. (Washington, D. C.) 1993, 93, 927.
<https://doi.org/10.1021/cr00019a005>
2. C. A.: Acc. Chem. Res. 1998, 31, 133.
<https://doi.org/10.1021/ar970230r>
3. B. T., Zharov I., Michl J.: Chem. Innov. 2001, 31, 23.
4. A., King B. T., Rudolph J., Rao P., Noll B. C., Michl J.: Collect. Czech. Chem. Commun. 2001, 66, 1238.
<https://doi.org/10.1135/cccc20011238>
5. Körbe S., Franken A., Michl J.: Unpublished results.
6. A. D.: J. Chem. Phys. 1993, 98, 5648.
<https://doi.org/10.1063/1.464913>
7. C., Yang W., Parr R. G.: Phys. Rev. B: Condens. Matter 1988, 37, 785.
<https://doi.org/10.1103/PhysRevB.37.785>
8. B., Savin A., Stoll H., Preuss H.: Chem. Phys. Lett. 1989, 157, 200.
<https://doi.org/10.1016/0009-2614(89)87234-3>
9. R., Hehre W. J., Pople J. A.: J. Chem. Phys. 1971, 54, 724.
<https://doi.org/10.1063/1.1674902>
10. W. J., Ditchfield R., Pople J. A.: J. Chem. Phys. 1972, 56, 2257.
<https://doi.org/10.1063/1.1677527>
11. P. C., Pople J. A.: Mol. Phys. 1974, 27, 209.
<https://doi.org/10.1080/00268977400100171>
12. M. S.: Chem. Phys. Lett. 1980, 76, 163.
<https://doi.org/10.1016/0009-2614(80)80628-2>
13. P. C., Pople J. A.: Theor. Chim. Acta 1973, 28, 213.
<https://doi.org/10.1007/BF00533485>
14. The functional was used as implemented in Gaussian 98 (ref.17): 0.5ExHF + 0.5ExLSDA + 0.5ΔExBECKE88 + EcLYP, where ExHF is Hartree–Fock exchange term, ExLSDA is the local spin density approximation exchange functional, ExBECKE88 is Becke’s 1988 functional ( A. D.: Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098), and EcLYP is the correlation functional of Lee, Yang, and Parr (ref.7).
<https://doi.org/10.1103/PhysRevA.38.3098>
15. P. M. W., Johnson B. G., Pople J. A., Frisch M. J.: Chem. Phys. Lett. 1992, 197, 499.
<https://doi.org/10.1016/0009-2614(92)85807-M>
16. N. C., Murray C. W., Amos R. D.: J. Phys. Chem. 1993, 97, 4392.
<https://doi.org/10.1021/j100119a023>
17. Frisch M. J. et al.: Gaussian 98, Revision A.9. Gaussian, Inc., Pittsburgh (PA) 1998.
18. J. E., Weinhold F.: J. Mol. Struct. (THEOCHEM) 1988, 169, 41.
<https://doi.org/10.1016/0166-1280(88)80248-3>
19. A. E., Curtiss L. A., Weinhold F.: Chem. Rev. (Washington, D. C.) 1988, 88, 899.
<https://doi.org/10.1021/cr00088a005>
20. L.: J. Am. Chem. Soc. 1936, 58, 1486.
<https://doi.org/10.1021/ja01299a050>
21. M. W., Frisch M. J., Wiberg K. B.: J. Am. Chem. Soc. 1991, 113, 4776.
<https://doi.org/10.1021/ja00013a010>
22. J.: J. Am. Chem. Soc. 1950, 72, 2438.
<https://doi.org/10.1021/ja01162a024>
23. Kirmse W.: Carbene Chemistry, 2nd ed., Chapter IV, p. 129. Academic Press, New York 1971.
24. T. D., Krause J. A., Shore S. G.: Inorg. Chem. 1988, 27, 2398.
<https://doi.org/10.1021/ic00287a006>
25. P., Eisenstein O., Michos D., Luo X. L., Siedle A. R., Wisnieski L., Zilm K. W., Crabtree R. H.: J. Am. Chem. Soc. 1993, 115, 7747.
<https://doi.org/10.1021/ja00070a020>
26. R. A., Munjal R. C.: Tetrahedron Lett. 1979, 49, 4721.
<https://doi.org/10.1016/S0040-4039(01)86693-4>
27. R. A.: Acc. Chem. Res. 1980, 13, 58.
<https://doi.org/10.1021/ar50146a005>
28. C. J., Jr.: Inorg. Chem. 1967, 6, 1199.
<https://doi.org/10.1021/ic50052a029>
29. M. L., Wang Z.-X., Schleyer P. v. R.: J. Am. Chem. Soc. 2000, 122, 4781.
<https://doi.org/10.1021/ja994490a>
30. R. L., Jasperse C. P.: Inorg. Chem. 1983, 22, 3843.
<https://doi.org/10.1021/ic00168a005>

