Collect. Czech. Chem. Commun.
2003, 68, 1488-1514
https://doi.org/10.1135/cccc20031488
Redox-Induced Ring Shuttling and Evidence for Folded Structures in Long and Flexible Two-Station Rotaxanes
Tohru Yamamotoa, Hsian-Rong Tsenga, J. Fraser Stoddarta,*, Vincenzo Balzanib, Alberto Credib, Filippo Marchionib and Margherita Venturib,*
a Department of Chemistry and Biochemistry, University of California, Los Angeles 405 Hilgard Avenue, Los Angeles, CA 90095-1569, U.S.A.
b Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
References
1a. Angew. Chem., Int. Ed. 2000, 39, 3348.
< V., Credi A., Raymo F. M., Stoddart J. F.: https://doi.org/10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X>
1b. Acc. Chem. Res. 2001, 34, 409–522 (Special Issue on Molecular Machines; J. F. Stoddart, Ed.).
1c. Struct. Bond. 2001, 99, 1–281 (Special Volume on Molecular Machines and Motors; J.-P. Sauvage, Ed.).
1d. Balzani V., Credi A., Venturi M.: Molecular Devices and Machines – A Journey into the Nanoworld, Chap. 15. Wiley-VCH, Weinheim 2003.
2a. Nature 1994, 369, 133.
< R. A., Córdova E., Kaifer A. E., Stoddart J. F.: https://doi.org/10.1038/369133a0>
2b. J. Am. Chem. Soc. 1997, 119, 7605.
< H., Kawabuchi A., Kotoo K., Kunitake M., Nakashima N.: https://doi.org/10.1021/ja971438a>
2c. Science 2001, 291, 2124.
< A. M., Frochot C., Gatti F. G., Leigh D. A., Mottier L., Paolucci F., Roffia S., Wurpel G. W. H.: https://doi.org/10.1126/science.1057886>
2d. Chem. Eur. J. 2002, 8, 1456.
< M. C., Dietrich-Buchecker C. O., Sauvage J.-P.: https://doi.org/10.1002/1521-3765(20020315)8:6<1456::AID-CHEM1456>3.0.CO;2-H>
3a. Science 2000, 289, 1172.
< C. P., Mattersteig G., Wong E. W., Luo Y., Beverly K., Sampaio J., Raymo F. M., Stoddart J. F., Heath J. R.: https://doi.org/10.1126/science.289.5482.1172>
3b. Acc. Chem. Res. 2001, 34, 433.
< A. R., Jeppesen J. O., Stoddart J. F., Luo Y., Collier C. P., Heath J. R.: https://doi.org/10.1021/ar000178q>
3c. ChemPhysChem 2002, 3, 519.
< Y., Collier C. P., Jeppesen J. O., Nielsen K. A., DeIonno E., Ho G., Perkins J., Tseng H.-R., Yamamoto T., Stoddart J. F., Heath J. R.: https://doi.org/10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2>
3d. Appl. Phys. Lett. 2003, 82, 1610.
< Y., Ohlberg D. A. A., Li X., Stewart, D. R., Williams R. S., Jeppesen J. O., Nielsen, K. A., Stoddart J. F., Olynick D. L., Anderson E.: https://doi.org/10.1063/1.1559439>
3e. Nanotechnology 2003, 14, 462.
D. R., Ohlberg D. A. A., Beck P., Chen Y., Williams R. S., Jeppesen J. O., Nielsen K. A., Stoddart J. F.:
4a. J. Am. Chem. Soc. 1998, 120, 11932.
< P. R., Ballardini R., Balzani V., Baxter I., Credi A., Fyfe M. C. T., Gandolfi M. T., Gómez-López M., Martínez-Díaz M.-V., Piersanti A., Spencer N., Stoddart J. F., Venturi M., White A. J. P., Williams D. J.: https://doi.org/10.1021/ja982167m>
4b. Chem. Eur. J. 2000, 6, 3558.
< P. R., Ballardini R., Balzani V., Credi A., Dress R., Ishow E., Kocian O., Preece J. A., Spencer N., Stoddart J. F., Venturi M., Wenger S.: https://doi.org/10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-M>
4c. J. Org. Chem. 2002, 67, 9175.
< A. M., Chiu S.-H., Stoddart J. F.: https://doi.org/10.1021/jo020373d>
4d. Collect. Czech. Chem. Commun. 2002, 67, 1719.
< M., Elizarov A. M., Stoddart J. F.: https://doi.org/10.1135/cccc20021719>
5a. Angew. Chem., Int. Ed. 2003, 42, 1491.
< H.-R., Vignon S. A., Stoddart J. F.: https://doi.org/10.1002/anie.200250453>
5b. Chem. Eur. J. 2003, 9, 2982.
< J. O., Nielsen K. A., Perkins J., Vignon S. A., Di Fabio A., Ballardini R., Gandolfi M. T., Venturi M., Balzani V., Becher J., Stoddart J. F.: https://doi.org/10.1002/chem.200204589>
5c. Tseng H.-R., Vignon S. A., Celeste P. C., Perkins J., Jeppesen J. O., Di Fabio A., Ballardini R., Gandolfi M. T., Venturi M., Balzani V., Stoddart J. F.: Chem. Eur. J., in press.
6a. J. Am. Chem. Soc. 1996, 118, 4931.
< P. R., Ballardini R., Balzani V., Belohradsky M., Gandolfi M. T., Philp D., Prodi L., Raymo F. M., Reddington M. V., Spencer N., Stoddart J. F., Venturi M., Williams D. J.: https://doi.org/10.1021/ja954334d>
6b. J. Am. Chem. Soc. 1997, 119, 302.
< M., Ashton P. R., Ballardini R., Balzani V., Belohradsky M., Gandolfi M. T., Kocian O., Prodi L., Raymo F. M., Stoddart J. F., Venturi M.: https://doi.org/10.1021/ja961817o>
6c. Eur. J. Org. Chem. 2000, 591.
< R., Balzani V., Dehaen W., Dell’Erba A. E., Raymo F. M., Stoddart J. F., Venturi M.: https://doi.org/10.1002/(SICI)1099-0690(200002)2000:4<591::AID-EJOC591>3.0.CO;2-I>
7a. Org. Lett. 2000, 2, 3547.
< J. O., Perkins J., Becher J., Stoddart J. F.: https://doi.org/10.1021/ol006387s>
7b. Angew. Chem., Int. Ed. 2001, 40, 1216.
< J. O., Perkins J., Becher J., Stoddart J. F.: https://doi.org/10.1002/1521-3773(20010401)40:7<1216::AID-ANIE1216>3.0.CO;2-W>
7c. J. Am. Chem. Soc. 2001, 123, 12632.
< C. P., Jeppesen J. O., Luo Y., Perkins J., Wong E. W., Heath J. R., Stoddart J. F.: https://doi.org/10.1021/ja0114456>
8. Angew. Chem., Int. Ed. Engl. 1981, 20, 187.
< G., Rissler K., Fritz H., Vetter W.: https://doi.org/10.1002/anie.198101871>
9. J. Am. Chem. Soc. 1989, 111, 3966.
< R. A., Kanagasabapathy V. M., Banait N. S., Steenken S.: https://doi.org/10.1021/ja00193a031>
10a. Acc. Chem. Res. 1993, 26, 469.
< S., Anderson H. L., Sanders J. K. M.: https://doi.org/10.1021/ar00033a003>
10b. Chem. Rev. (Washington, D. C.) 1995, 95, 2169.
< J. P., Kelly J. W.: https://doi.org/10.1021/cr00038a015>
10c. Pure Appl. Chem. 1996, 68, 313.
< F. M., Stoddart J. F.: https://doi.org/10.1351/pac199668020313>
10d. Diederich F., Stang P. J. (Eds): Templated Organic Synthesis. Wiley-VCH, Weinheim 1999.
10e. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4797.
< J. F., Tseng H.-R.: https://doi.org/10.1073/pnas.052708999>
11. Synlett 1999, 330.
< J., Matthews O. A., Nielsen M. B., Raymo F. M., Stoddart J. F.: https://doi.org/10.1055/s-1999-2610>
12. Eur. J. Org. Chem. 2000, 11, 2135.
< J. G., Bang K. S., Thorup N., Becher J.: https://doi.org/10.1002/1099-0690(200006)2000:11<2135::AID-EJOC2135>3.0.CO;2-P>
13. J. Am. Chem. Soc. 1992, 114, 6330.
< P. R., Brown G. R., Isaacs N. S., Giuffrida D., Kohnke F. H., Mathias J. P., Slawin A. M. Z., Smith D. R., Stoddart J. F., Williams D. J.: https://doi.org/10.1021/ja00042a009>
14. J. Org. Chem. 2000, 65, 1924.
< V., Credi A., Mattersteig G., Matthews O. A., Raymo F. M., Stoddart J. F., Venturi M., White A. J. P., Williams D. J.: https://doi.org/10.1021/jo991781t>
15. Chem. Eur. J. 1997, 3, 1992.
< M., Ashton P. R., Balzani V., Credi A., Mattersteig G., Matthews O. A., Montalti M., Spencer N., Stoddart J. F., Venturi M.: https://doi.org/10.1002/chem.19970031214>
16. J. Am. Chem. Soc. 1995, 117, 11171.
P. R., Ballardini R., Balzani V., Credi A., Gandolfi M. T., Marquis D. J.-F., Pérez- Garcia L., Prodi L., Stoddart J. F., Venturi M., White A. J. P., Williams D. J.:
17. J. Am. Chem. Soc. 1992, 114, 193.
< P.-L., Ashton P. R., Ballardini R., Balzani V., Delgado M., Gandolfi M. T., Goodnow T. T., Kaifer A. E., Philp D., Pietraszkiewicz M., Prodi L., Reddington M. V., Slawin A. M. Z., Spencer N., Stoddart J. F., Vicent C., Williams D. J.: https://doi.org/10.1021/ja00027a027>
18. Anal. Chem. 1994, 66, 3013.
< E. A., Lilienthal R. R., Fonseca R. J., Smith D. K.: https://doi.org/10.1021/ac00091a006>
19a. Synlett 1997, 1211.
< K. B., Becher J.: https://doi.org/10.1055/s-1997-1001>
19b. J. Mater. Chem. 2000, 10, 589.
< M. R.: https://doi.org/10.1039/a908385e>
20. J. Org. Chem. 1967, 32, 1322.
< A., Maurer A. H., Roberts B. G.: https://doi.org/10.1021/jo01280a009>
21. Angew. Chem., Int. Ed. Engl. 1998, 37, 333.
< M., Ashton P. R., Balzani V., Credi A., Hamers C., Mattersteig G., Montalti M., Shipway A. N., Spencer N., Stoddart J. F., Tolley M. S., Venturi M., White A. J. P., Williams D. J.: https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<333::AID-ANIE333>3.0.CO;2-P>
22a. J. Org. Chem. 1993, 58, 6550.
< E., Bissell R. A., Spencer N., Ashton P. R., Stoddart J. F., Kaifer A. E.: https://doi.org/10.1021/jo00076a008>
22b. J. Org. Chem. 1995, 60, 1033.
< E., Bissell R. A., Kaifer A. E.: https://doi.org/10.1021/jo00109a040>
23. The splitting of the first reduction process of the two bipyridinium units in a rotaxane composed of CBPQT4+ and a phenylenediamine-based dumbbell was attributed to an increase in the electronic communication between such units through the interposed electron-donor moiety (ref.22b). This explanation is unlikely in the present case, since the splitting is not observed for an adduct and a pseudorotaxane having a TTF unit encircled by CBPQT4+ (ref.15).
24. 1H NMR spectra recorded in CD3COCD3 (see Experimental) for the two dumbbell compounds 3 and 4 also indicate that they are both slowly equilibrating mixtures of cis and trans isomers, as shown in Fig. 1.
25a. Liebigs Ann. Chem. 1973, 310.
< S., Kiesslich G., Quast H., Scheutzow D.: https://doi.org/10.1002/jlac.197319730219>
25b. J. Prakt. Chem. 1985, 327, 767.
< G., Fanghänel E.: https://doi.org/10.1002/prac.19853270509>
25c. New J. Chem. 1998, 1061.
< A., Montalti M., Balzani V., Langford S. J., Raymo F. M., Stoddart J. F.: https://doi.org/10.1039/a804787a>
26a. Science 1996, 271, 1558.
< T., Chesick J. P., Winkler J. R., Gray H. B.: https://doi.org/10.1126/science.271.5255.1558>
26b. J. Am. Chem. Soc. 1999, 121, 3811.
< E., Wittung-Stafshede P., Kliger D. S.: https://doi.org/10.1021/ja983169+>
26c. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 7760.
< J. C., Gray H. B., Winkler J. R.: https://doi.org/10.1073/pnas.141235198>
26d. J. Am. Chem. Soc. 1993, 115, 12609.
< G. P., Gellman S. H.: https://doi.org/10.1021/ja00079a060>
27. Perrin D. D., Armarego W. L. F.: Purification of Laboratory Chemicals. Pergamon Press, New York 1998.
28. J. Phys. Chem. B 1999, 103, 6713.
< I., Brown K. N., Fleming D. S., Gulyas P. T., Lay P. A., Masters A. F., Phillips L.: https://doi.org/10.1021/jp991381+>
29. J. Am. Chem. Soc. 1978, 100, 4248.
< J. B., Margel S., Bard A. J., Anson F. C.: https://doi.org/10.1021/ja00481a040>