Collect. Czech. Chem. Commun. 2003, 68, 1647-1662
https://doi.org/10.1135/cccc20031647

A Solvent-Dependent and Electrochemically Controlled Self-Assembling/Disassembling System

Valeria Amendolaa, Massimo Boiocchib, Yuri Diaz Fernandezc, Carlo Manganoa and Piersandro Pallavicinia,*

a Dipartimento di Chimica Generale, Università di Pavia, via Taramelli 12, 27100 Pavia, Italy
b Centro Grandi Strumenti, Università di Pavia, via Bassi 6, 27100 Pavia, Italy
c Instituto Superior de Ciencias y de Tecnologias Nucleares, Ave. Salvador Allende y Luaces, Quinta de los Molinos, Plaza de la Ravolucion, Habana, Cuba

References

1. Balzani V., Credi A., Raymo F. M., Stoddart J. F.: Angew. Chem. 2000, 39, 3348. <https://doi.org/10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X>
2. Amendola V., Fabbrizzi L., Mangano C., Pallavicini P.: Acc. Chem. Res. 2001, 34, 488. <https://doi.org/10.1021/ar010011c>
3a. Benniston A. C., Harriman A.: Angew. Chem., Int. Ed. Engl. 1993, 32, 1459. <https://doi.org/10.1002/anie.199314591>
3b. Benniston A. C., Harriman A., Lynch V. M.: Tetrahedron Lett. 1994, 35, 1473. <https://doi.org/10.1016/S0040-4039(00)76735-9>
3c. Ashton P. R., Ballardini R., Balzani V., Credi A., Dress R., Ishow E., Kleverlaan C. J., Kocian O., Preece J. A., Spencer N., Stoddart J. F., Venturi M., Wenger S.: Chem. Eur. J. 2000, 6, 3558. <https://doi.org/10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-M>
4a. Raehm L., Kern J.-M., Sauvage J.-P.: Chem. Eur. J. 1999, 5, 3310. <https://doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3310::AID-CHEM3310>3.0.CO;2-R>
4b. Armaroli N., Balzani V., Collin J.-P., Gavina P., Sauvage J.-P., Ventura B.: J. Am. Chem. Soc. 1999, 121, 4397. <https://doi.org/10.1021/ja984051w>
4c. Ballardini R., Balzani V., Dehaen W., Dell’Erba A. E., Raymo F. M., Stoddart J. F., Venturi M.: Eur. J. Org. Chem. 1999, 591.
4d. Ceroni P., Leigh D. A., Mottier L., Paolucci F., Roffia S., Tetard D., Zerbetto F.: J. Phys. Chem. B 1999, 103, 10171. <https://doi.org/10.1021/jp991870+>
4e. Cardenas D. J., Livoreil A., Sauvage J.-P.: J. Am. Chem. Soc. 1996, 118, 11980. <https://doi.org/10.1021/ja962774e>
5. Gisselbrecht J.-P., Gross M., Lehn J.-M., Sauvage J.-P., Ziessel R., Piccinni-Leopardi C., Arrieta J. M., Germain G., Van Meerssche M.: Nouv. J. Chim. 1984, 8, 661.
6a. Amendola V., Fabbrizzi L., Linati L., Mangano C., Pallavicini P., Pedrazzini V., Zema M.: Chem. Eur. J. 1999, 5, 3679. <https://doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3679::AID-CHEM3679>3.0.CO;2-J>
6b. Amendola V., Fabbrizzi L., Gianelli L., Maggi C., Mangano C., Pallavicini P., Zema M.: Inorg. Chem. 2001, 40, 3579. <https://doi.org/10.1021/ic001155a>
6c. Amendola V., Fabbrizzi L., Pallavicini P.: Coord. Chem. Rev. 2001, 216–217, 435. <https://doi.org/10.1016/S0010-8545(01)00311-3>
6d. Amendola V., Fabbrizzi L., Pallavicini P., Sartirana E., Taglietti A.: Inorg. Chem. 2003, in press.
7. Jacq J.: J. Electroanal. Chem. 1971, 29, 149. <https://doi.org/10.1016/S0022-0728(71)80080-3>
8a. Evans D. H.: Chem. Rev. 1990, 90, 739. <https://doi.org/10.1021/cr00103a004>
8b. Bard A. J., Faulkner L. R.: Electrochemical Methods. Wiley, New York 1980.
9. Pease A. R., Jeppesen J. O., Stoddart J. F., Luo Y., Collier C. P., Heath J. R.: Acc. Chem. Res. 2001, 34, 433. <https://doi.org/10.1021/ar000178q>
10. Masood M. A., Enemark E. J., Stack T. D. P.: Angew. Chem., Int. Ed. Engl. 1998, 37, 928. <https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<928::AID-ANIE928>3.0.CO;2-T>
11a. Baxter P. N. W., Khoury R. G., Lehn J.-M., Baum G., Fenske D.: Chem. Eur J. 2000, 6, 4140. <https://doi.org/10.1002/1521-3765(20001117)6:22<4140::AID-CHEM4140>3.0.CO;2-5>
11b. Baxter P. N. W., Lehn J.-M., Rissanen K.: J. Chem. Soc., Chem. Commun. 1997, 1323. <https://doi.org/10.1039/a703083e>
12. Low-intensity peaks are also found at higher m/z in the spectrum, indicating the formation of small quantities of larger oligomeric molecular cations in solution, under these conditions.
13. Molecular dynamics calculations were run with the HyperChem 3 for Windows package (Hypercube Inc. & Autodesk Inc.). The geometry optimization was performed using the MM+ force field, which is an extension of MM2, contained in the HyperChem Help Database.
14. Volume of the CH2Cl2 solution was 5 ml, concentration of the complex 8.0 × 10–4 mol l–1 and volume of each acetonitrile addition 0.1 ml. Transformation was complete after 20 additions (CH2Cl2/CH3CN 5:2 v/v).
15. In this experiment, the intensity of the 416 nm band never reaches that of the fully formed one ligand/two metal complex, due to the 1:1 composition of the system.
16. Leigh D. A., Moody K., Smart J. P., Watson K. J., Slawin A. M. Z.: Angew. Chem., Int. Ed. Engl. 1996, 35, 306. <https://doi.org/10.1002/anie.199603061>
17. Sheldrick G. M.: SADABS, Siemens Area Detector Absorption Correction Program. University of Göttingen, Göttingen 1996.
18. Altomare A., Burla M. C., Camalli M., Cascarano G. L., Giacovazzo C., Guagliardi A., Moliterni A. G. G., Polidori G., Spagna R.: J. Appl. Crystallogr. 1999, 32, 115. <https://doi.org/10.1107/S0021889898007717>
19. Sheldrick G. M.: SHELX97, Programs for Crystal Structure Analysis. University of Göttingen, Göttingen 1998.