Collect. Czech. Chem. Commun.
2004, 69, 1-12
https://doi.org/10.1135/cccc20040001
On the Structure and Physical Origin of the Weak Interaction Between H and CO
Vladimír Lukeša, Viliam Laurinca,*, Michal Ilčina and Stanislav Biskupičb
a Department of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
b Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
References
1. J. Chem. Phys. 1995, 102, 5719.
< P., Bouteiller Y., Perchard J. P.: https://doi.org/10.1063/1.469302>
2. Chem. Phys. Lett. 1996, 259, 185.
< A., Papakondylis A., Mavridis A.: https://doi.org/10.1016/0009-2614(96)00738-5>
3. Tielens A. G. G. M. in: Chemistry and Spectroscopy of Interstellar Molecules (D. K. Bohme, E. Herbst, N. Kaifu and S. Saito, Eds), p. 237. University of Tokyo, Tokyo 1992.
4. Herbst E. in: Dust and Chemistry in Astronomy (T. J. Millar and D. A. Williams, Eds), p. 183. Institute of Physics, Bristol 1993.
5. Astrophys. J. 2002, 569, 541.
< D. E.: https://doi.org/10.1086/339279>
6. J. Chem. Phys. 1986, 85, 911.
< J. M., Bittman J. S., Harding L. B.: https://doi.org/10.1063/1.451246>
7. J. Chem. Phys. 1988, 89, 3044.
< J. S., Goldstein A. N., Wiliams I. H.: https://doi.org/10.1063/1.454959>
8. J. Phys. Chem. A 2003, 107, 186.
< D. A., Feller D., Francisco J. S.: https://doi.org/10.1021/jp0220736>
9. J. Chem. Phys. 1992, 96, 2799.
< S. W., Wagner A. F., Gazdy B., Bowman J. M.: https://doi.org/10.1063/1.461976>
10. J. Chem. Phys. 1994, 100, 1021.
< D., Bowman J. N.: https://doi.org/10.1063/1.466684>
11. Chem. Phys. Lett. 1995, 235, 277.
< D., Bowman J. N.: https://doi.org/10.1016/0009-2614(95)00104-C>
12. J. Chem. Phys. 1993, 98, 525.
< H., Perić M., Peyerimhoff S. D.: https://doi.org/10.1063/1.464647>
13. J. Chem. Phys. 1995, 102, 3593.
< H. J., Bauer C., Rosmus P., Keller H. M., Stumpf M., Schinke R.: https://doi.org/10.1063/1.468588>
14. J. Chem. Phys. 1996, 105, 4983.
< H. M., Floethmann H., Dobbyn A. J., Schinke H. J., Bauer C., Rosmus P.: https://doi.org/10.1063/1.472347>
15. Int. J. Quantum Chem. 1996, 55, 261.
< M., Lischka H., Biskupič S.: https://doi.org/10.1002/qua.560550307>
16. J. Chem. Phys. 1996, 105, 9921.
< D.: https://doi.org/10.1063/1.472857>
17. J. Mol. Struct. (THEOCHEM) 1998, 427, 157.
< B.: https://doi.org/10.1016/S0166-1280(97)00208-X>
18. J. Phys. Chem. A 2000, 104, 2287.
< T., Dunning T. H., Peterson K. A.: https://doi.org/10.1021/jp9925583>
19. J. Phys. Chem. A 2003, 107, 2343.
< A. V., Boggs J. E.: https://doi.org/10.1021/jp0223298>
20. Mol. Phys. 1970, 19, 533.
< S. F., Bernardi F.: https://doi.org/10.1080/00268977000101561>
21. Chem. Rev. 1994, 94, 1873.
< F. B., van Duijneveldt-van de Rijdt J. G. C. M., van Lenthe J. H.: https://doi.org/10.1021/cr00031a007>
22. Lect. Notes Chem. 1980, 16, 174.
P., Urban M.:
23. Hobza P., Zahradník R.: Intermolecular Complexes. Academia, Prague 1988.
24. Chem. Rev. 1994, 94, 1723.
< G., Szcęśniak M. M.: https://doi.org/10.1021/cr00031a001>
25. Chem. Rev. 2000, 100, 4227.
< G., Szcęśniak M. M.: https://doi.org/10.1021/cr990048z>
26. J. Chem. Phys. 1991, 95, 6576.
< S., Jeziorski B., Szalewicz K.: https://doi.org/10.1063/1.461528>
27. Jeziorski B., Moszyński R., Ratkiewicz A., Rybak S., Szalewicz K., Williams H. L. in: Methods and Techniques in Computational Chemistry: METECC-94 (E. Clementi, Ed.), Vol. B. STEF, Cagliari 1993.
28. Theor. Chem. Acc. 1998, 99, 53.
< V., Lukeš V., Biskupič S.: https://doi.org/10.1007/s002140050302>
29. Int. J. Quantum Chem. 1999, 75, 81.
< V., Laurinc V., Biskupič S.: https://doi.org/10.1002/(SICI)1097-461X(1999)75:2<81::AID-QUA2>3.0.CO;2-3>
30. Mol. Phys. 1981, 42, 1345.
< V., Laurinc V., Biskupič S.: https://doi.org/10.1080/00268978100101011>
31. Theor. Chim. Acta 1980, 56, 315.
< P., Zahradník R., Hubač I., Urban M., Kellö V.: https://doi.org/10.1007/BF00552595>
32. J. Comput. Chem. 1999, 20, 857.
< V., Laurinc V., Biskupič S.: https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<857::AID-JCC10>3.0.CO;2-#>
33. Adv. Phys. 1956, 5, 1.
< P.-O.: https://doi.org/10.1080/00018735600101155>
34. J. Mol. Struct. (THEOCHEM) 2001, 547, 209.
< T., Cezard C., Weck G., Kochanski E., Padel L.: https://doi.org/10.1016/S0166-1280(01)00471-7>
35. J. Chem. Phys. 1973, 58, 5823.
< E.: https://doi.org/10.1063/1.1679209>
36. Frisch M. J., Trucks G. W., Schlegel H. B., Gill P. M. W., Johnson B. G., Robb M. A., Cheeseman J. R., Keith T., Petersson G. A., Montgomery J. A., Raghavachari K., Al-Laham M. A., Zakrzewski V. G., Ortiz J. V., Foresman J. B., Cioslowski J., Stefanov B. B., Nanayakkara A., Challacombe M., Peng C. Y., Ayala P. Y., Chen W., Wong M. W., Andres J. L., Replogle E. S., Gomperts R., Martin R. L., Fox D. J., Binkley J. S., Defrees D. J., Baker J., Stewart J. P., Head-Gordon M., Gonzalez C., Pople J. A.: Gaussian 94, Revision D.3. Gaussian Inc., Pittsburgh (PA) 1995.
37. Collect. Czech. Chem. Commun. 1988, 53, 1995.
< A.: https://doi.org/10.1135/cccc19881995>
38. J. Mol. Struct. (THEOCHEM) 1991, 80, 147.
< A., Urban M.: https://doi.org/10.1016/0166-1280(91)89010-X>
39. J. Chem. Phys. 1992, 97, 4989.
< F.-M., Pan Y.-K.: https://doi.org/10.1063/1.463852>
40. J. Chem. Phys. 1997, 107, 9921.
< T. G. A., Moszyński R., Wormer P. E. S., van der Avoird A.: https://doi.org/10.1063/1.475290>
41. Engels-Müllges G., Uhlig F.: Numerical Algorithms with FORTRAN. Springer, Berlin 1996.
42. J. Chem. Phys. 1999, 110, 11734.
< G. C., Cybulski S. M.: https://doi.org/10.1063/1.479118>
43. J. Chem. Phys. 1994, 101, 4964.
< B., Chalasiński G., Olszewski K.: https://doi.org/10.1063/1.467419>