Collect. Czech. Chem. Commun. 2004, 69, 13-33
https://doi.org/10.1135/cccc20040013

Theoretical Study on the Mechanism of Reaction of Ground-State Fe Atoms with Carbon Dioxide

Dimitrios A. Pantazis, Athanassios C. Tsipis and Constantinos A. Tsipis*

Laboratory of Applied Quantum Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

References

1. Yin X., Moss J. R.: Coord. Chem. Rev. 1999, 181, 27; and references therein. <https://doi.org/10.1016/S0010-8545(98)00171-4>
2. Herskovitz T.: J. Am. Chem. Soc. 1977, 99, 2391. <https://doi.org/10.1021/ja00449a087>
3. Behr A.: Carbon Dioxide Activation by Metal Complexes. VCH, Weinheim 1988.
4a. Braunstein P., Matt D., Nobel D.: Chem. Rev. 1988, 88, 747. <https://doi.org/10.1021/cr00087a003>
4b. Behr A.: Angew. Chem., Int. Ed. Engl. 1988, 27, 661. <https://doi.org/10.1002/anie.198806611>
5a. Ozin G. A., Huber H., McIntosh D.: Inorg. Chem. 1978, 17, 1472. <https://doi.org/10.1021/ic50184a016>
5b. Huber H., McIntosh D., Ozin G. A.: Inorg. Chem. 1977, 16, 975. <https://doi.org/10.1021/ic50171a001>
5c. Mascetti J., Tranquille M.: J. Phys. Chem. 1988, 92, 2177. <https://doi.org/10.1021/j100319a020>
5d. Galan F., Fouassier M., Tranquille M., Mascetti J., Pápai I.: J. Phys. Chem. A 1997, 101, 2626. <https://doi.org/10.1021/jp9701552>
6a. Tjelta B. L., Walter D., Armentrout P. B.: Int. J. Mass Spectrom. 2001, 204, 7. <https://doi.org/10.1016/S1387-3806(00)00342-0>
6b. Gregoire G., Velasquez J., Duncan M. A.: Chem. Phys. Lett. 2001, 349, 451. <https://doi.org/10.1016/S0009-2614(01)01247-7>
6c. Dieterle M., Harvey J. N., Heinemann C., Schwarz J., Schröder D., Schwarz H.: Chem. Phys. Lett. 1997, 277, 399. <https://doi.org/10.1016/S0009-2614(97)00898-1>
6d. Asher R. L., Bellert D., Buthelezi T., Brucat P. J.: Chem. Phys. Lett. 1995, 243, 269.
6e. Schwarz J., Schwarz H.: Organometallics 1994, 13, 1518. <https://doi.org/10.1021/om00016a064>
6f. Lesson D. E., Asher R. L., Brucat P. J.: J. Chem. Phys. 1991, 95, 1414. <https://doi.org/10.1063/1.461122>
7. Caballol R., Marcos E. S., Barthelat J.-C.: J. Chem. Phys. 1987, 91, 1328. <https://doi.org/10.1021/j100290a012>
8. Jeung G.-H.: Chem. Phys. Lett. 1995, 232, 319. <https://doi.org/10.1016/0009-2614(94)01364-2>
9. Hwang D.-Y., Mebel A. M.: Chem. Phys. Lett. 2002, 357, 51. <https://doi.org/10.1016/S0009-2614(02)00438-4>
10a. Pápai I., Hannachi Y., Gwizdala S., Mascetti J.: J. Phys. Chem. A 2002, 106, 4181. <https://doi.org/10.1021/jp014034k>
10b. Pápai I., Schubert G., Hannachi Y., Mascetti J.: J. Phys. Chem. A 2002, 106, 9551. <https://doi.org/10.1021/jp025918m>
10c. Pápai I., Mascetti J., Fournier R.: J. Phys. Chem. A 1997, 101, 4465. <https://doi.org/10.1021/jp970379k>
11. Fan H.-J., Liu C.-W.: Chem. Phys. Lett. 1999, 300, 351. <https://doi.org/10.1016/S0009-2614(98)01349-9>
12. Sodupe M., Branchandell V., Rosi M., Bauschlicher C. W., Jr.: J. Phys. Chem. A 1997, 101, 7854. <https://doi.org/10.1021/jp9711252>
13a. Becke A. D.: Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
13b. Vosko S. H., Wilk L., Nussair M.: Can. J. Phys. 1980, 58, 1200. <https://doi.org/10.1139/p80-159>
13c. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
14. Lee C., Yang W., Parr R. G.: Phys. Rev. B: Condens. Matter 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
15a. Ziegler T.: Chem. Rev. 1991, 91, 651. <https://doi.org/10.1021/cr00005a001>
15b. Nicholas J. B.: Top. Catal. 1997, 4, 157. <https://doi.org/10.1023/A:1019179903977>
15c. Koch W. R., Hertwing H.: Chem. Phys. Lett. 1997, 286, 345.
15d. Curtis L. A., Raghavachari K., Redfern P. C., Pople J. A.: Chem. Phys. Lett. 1997, 270, 419. <https://doi.org/10.1016/S0009-2614(97)00399-0>
15e. Smith D. M., Golding B. T., Radom L.: J. Am. Chem. Soc. 1999, 121, 9388. <https://doi.org/10.1021/ja991649a>
15f. Chandra A. K., Nguyen M. T.: Chem. Phys. 1998, 232, 299. <https://doi.org/10.1016/S0301-0104(98)00111-6>
15g. Mire L. W., Wheeler S. D., Wagenseller E., Marynick D. S.: Inorg. Chem. 1998, 37, 3099. <https://doi.org/10.1021/ic971230q>
15h. Nicholas J. B.: Top. Catal. 1999, 9, 181. <https://doi.org/10.1023/A:1019135227543>
15i. Arnaud R., Adamo C., Cossi M., Millet A., Vallé Y., Barone V.: J. Am. Chem. Soc. 2000, 122, 324. <https://doi.org/10.1021/ja9911059>
16. Schlegel H. B.: J. Comput. Chem. 1982, 3, 214. <https://doi.org/10.1002/jcc.540030212>
17. Head-Gordon M., Pople J. A., Frisch M.: Chem. Phys. Lett. 1988, 153, 503. <https://doi.org/10.1016/0009-2614(88)85250-3>
18a. Gonzalez C., Schlegel H. B.: J. Chem. Phys. 1989, 90, 2154. <https://doi.org/10.1063/1.456010>
18b. Gonzalez C., Schlegel H. B.: J. Phys. Chem. 1990, 94, 5523. <https://doi.org/10.1021/j100377a021>
19. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Orchterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaroni I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M., Johnson P., Chen W., Wong M. W., Andres J. L., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.7. Gaussian Inc., Pittsburgh (PA) 1998.
20. ChemOffice 97 Cambridge Scientific Computing, Inc., 875 Massachusetts Ave., Suite 41, Cambridge, MA 02139, U.S.A.
21. NIST Chemistry Webbook. NIST Standard Reference Data Base Number 9, February 2000 Release (http://webbook.nist.gov/chemistry/).
22. Souter P. F., Andrews L.: J. Am. Chem. Soc. 1997, 119, 7350. <https://doi.org/10.1021/ja971038n>