Collect. Czech. Chem. Commun. 2004, 69, 47-62
https://doi.org/10.1135/cccc20040047

Theoretical Study of the Substituent and Solvent Effects on the Molecular Structures, Absorption and Emission Spectra of Open-Form Spiropyrans

Yinghong Sheng and Jerzy Leszczynski*

The Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, MS 39217, U.S.A.

References

1. Willner I., Katz E., Willner B., Blonder R., Heleg-Shabtai V., Buckman A. F.: Biosens. Bioelectron. 1997, 12, 337. <https://doi.org/10.1016/S0956-5663(96)00065-6>
2a. Willner I.: Acc. Chem. Res. 1997, 30, 347. <https://doi.org/10.1021/ar9700062>
2b. Willner I., Rubin S., Shatzmiller R., Zor T.: J. Am. Chem. Soc. 1993, 115, 8690. <https://doi.org/10.1021/ja00072a023>
2c. Garcia A. A., Cherian S., Park J., Gust D., Jahnke F., Rosario R.: J. Phys. Chem. 2000, 104, 103.
3a. Guglielmetti R. in: Photochromism – Molecules and Systems, Studies in Organic Chemistry (H. Durr and H. Bouas-Laurent, Eds), Vol. 40, pp. 314, 493, 879. Elsevier, Amsterdam 1990.
3b. Crano J. C., Guglielmetti R. (Eds): Organic Photochromic and Thermocheromic Compounds, Vols 1 and 2. Plenum Press, New York 1999.
4. Becker R. S., Michl J.: J. Am. Chem. Soc. 1996, 88, 5931. <https://doi.org/10.1021/ja00976a044>
5a. Salemi-Delvaux C., Luccioni-Houze B., Baillet G., Giusti G., Guglliemetti R.: J. Photochem. Photobiol. A: Chem. 1995, 91, 223. <https://doi.org/10.1016/1010-6030(95)04113-X>
5b. Pimienta V., Lavabre D., Levy G., Samat A., Guglielmetti R., Micheau J. C.: J. Phys. Chem. 1996, 100, 4485. <https://doi.org/10.1021/jp9531117>
5c. Tamai N., Miyasaka H.: Chem. Rev. 2000, 100, 1875. <https://doi.org/10.1021/cr9800816>
6a. Chibisov A. K., Görner H.: J. Phys. Chem. A 1997, 101, 4305. <https://doi.org/10.1021/jp962569l>
6b. Görner H.: Phys. Chem. Chem. Phys. 2001, 3, 416. <https://doi.org/10.1039/b007708i>
7a. Lee C., Yang W., Parr R.: Phys. Rev. B: Condens. Matter 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
7b. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
7c. Miehlich B., Savin A., Stoll H., Preuss H.: Chem. Phys. Lett. 1989, 90, 5622.
8a. Hariharan P. C., Pople J. A.: Chem. Phys. Lett. 1972, 66, 217. <https://doi.org/10.1016/0009-2614(72)80259-8>
8b. Hehre W. J., Radom L., Schleyer P. v. R., Pople J. A.: Ab initio Molecular Orbital Theory. Wiley, New York 1986.
9a. Holmén A., Broo A.: Int. J. Quantum Chem. 1995, QBS22, 113. <https://doi.org/10.1002/qua.560560712>
9b. Broo A., Holmén A.: Chem. Phys. 1996, 211, 147. <https://doi.org/10.1016/0301-0104(96)00184-X>
9c. Broo A.: Int. J. Quantum Chem. 2000, 77, 454. <https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<454::AID-QUA45>3.0.CO;2-F>
10. Cances M. T., Mennucci V., Tomasi J.: J. Chem. Phys. 1997, 107, 3032. <https://doi.org/10.1063/1.474659>
11a. Bauernschmitt R., Ahlrichs R.: Chem. Phys. Lett. 1996, 256, 454. <https://doi.org/10.1016/0009-2614(96)00440-X>
11b. Straman R. E., Scuseria G. E., Frisch M. J.: J. Chem. Phys. 1998, 109, 8218. <https://doi.org/10.1063/1.477483>
12. Han Y.-K., Lee S. U.: Chem. Phys. Lett. 2002, 366, 9. <https://doi.org/10.1016/S0009-2614(02)01460-4>
13. Serrano-Andres L., Merchan M., Rubio M., Roos B. O.: Chem. Phys. Lett. 1998, 295, 195. <https://doi.org/10.1016/S0009-2614(98)00934-8>
14. Parusel A. B., Rettig W., Sudholt W.: J. Phys. Chem. 2002, 106, 804. <https://doi.org/10.1021/jp015513m>
15. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B. G., Chen W., Wong M. W., Andres J. L., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.10. Gaussian Inc., Pittsburgh (PA) 1998.
16. Broo A., Holmén A.: J. Phys. Chem. A 1997, 101, 3589. <https://doi.org/10.1021/jp963928f>
17a. Neiss C., Saalfrank P., Parac M., Grimme S.: J. Phys. Chem. A 2003, 107, 140. <https://doi.org/10.1021/jp021671h>
17b. Parac M., Grimme S.: J. Phys. Chem. A 2002, 106, 6844. <https://doi.org/10.1021/jp020550e>
17c. Furche F., Ahlrichs R., Wachsmann C., Weber E., Sobanski A., Vögtle F., Grimme S.: J. Am. Chem. Soc. 2002, 122, 1717. <https://doi.org/10.1021/ja991960s>
17d. Parusel A. B. J., Rettig W., Sudholt W.: J. Phys. Chem. A 2002, 106, 804. <https://doi.org/10.1021/jp015513m>
18. Brooker L. G. S., Keyes G. H., Sprague R. H., Vandyke R. H., Vanlare E., Vanzandt G., White F. L., Cressman H. W. J., Dent S. G.: J. Am. Chem. Soc. 1951, 73, 5332. <https://doi.org/10.1021/ja01155a096>
19a. Meyers F., Marder S. R., Pierce B. M., Brédas J. L.: J. Am. Chem. Soc. 1994, 116, 10703. <https://doi.org/10.1021/ja00102a040>
19b. Marder S. R., Gorman C. B., Meyers F., Perry J. W., Bourhill G., Brédas J. L., Pierce B. M.: Science 1994, 265, 632. <https://doi.org/10.1126/science.265.5172.632>
19c. Sheng Y., Jiang Y., Wang X.-C.: J. Chem. Soc., Faraday Trans. 1998, 94, 47. <https://doi.org/10.1039/a703928j>
20. Stewart J. J. P., Frank J.: Seiler Research Laboratory, U.S. Air Force Academy, Colorado Springs, CO 80840, U.S.A.
21a. Gorman C. B., Marder S. R.: Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 11297. <https://doi.org/10.1073/pnas.90.23.11297>
21b. Sheng Y., Jiang Y.: J. Chem. Soc., Faraday Trans. 1998, 94, 1929.