Collect. Czech. Chem. Commun.
2004, 69, 90-104
https://doi.org/10.1135/cccc20040090
Can We Avoid the Intruder-State Problems in the State-Universal Coupled-Cluster Approaches While Preserving Size Extensivity?
Josef Paldus and Xiangzhu Li
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
References
1a. J. Chem. Phys. 1966, 45, 4256.
< J.: https://doi.org/10.1063/1.1727484>
1b. Adv. Chem. Phys. 1969, 14, 35.
J.:
2. Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 50.
< J., Čížek J., Shavitt I.: https://doi.org/10.1103/PhysRevA.5.50>
3. Bartlett R. J. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.), Part I, p. 1047. World Scientific, Singapore 1995.
4. Adv. Chem. Phys. 1999, 110, 1.
< J., Li X.: https://doi.org/10.1002/9780470141694.ch1>
5a. Coester F. in: Lectures in Theoretical Physics (K. T. Mahanthappa and W. E. Brittin, Eds), Vol. 11B, p. 157. Gordon and Breach, New York 1969.
5b. Int. J. Quantum Chem., Quantum Chem. Symp. 1978, S12, 33.
I.:
5c. Mol. Phys. 1977, 33, 955.
< D., Moitra R. K., Mukhopadhyay A.: https://doi.org/10.1080/00268977700100871>
5d. J. Chem. Phys. 1984, 80, 5058.
< A., Mukherjee D.: https://doi.org/10.1063/1.446574>
5e. Phys. Rep. 1987, 151, 93.
< I., Mukherjee D.: https://doi.org/10.1016/0370-1573(87)90073-1>
6. J. Chem. Phys. 1989, 90, 2714.
< B., Paldus J.: https://doi.org/10.1063/1.455919>
7. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.
< B., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.24.1668>
8. Lindgren I., Morrison J.: Atomic Many-Body Theory. Springer-Verlag, Berlin 1982.
9. Adv. Quantum Chem. 1989, 20, 292.
D., Pal S.:
10. Paldus J. in: Methods in Computational Molecular Physics; NATO Advanced Study Institute, Series B: Physics (S. Wilson and G. H. F. Diercksen, Eds), Vol. 293, p. 99. Plenum Press, New York 1992.
11. Paldus J. in: Relativistic and Electron Correlation Effects in Molecules and Solids; NATO Advanced Study Institute, Series B: Physics (G. L. Malli, Ed.), Vol. 318, p. 207. Plenum Press, New York 1994.
12. Paldus J. in: Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, Ed.), Vol. 2, Part 3, Chap. 19, p. 272. John Wiley, Chichester 2003.
13a. Chem. Phys. Lett. 1986, 128, 45.
< U., Haque A.: https://doi.org/10.1016/0009-2614(86)80142-7>
13b. Int. J. Quantum Chem., Quantum Chem. Symp. 1986, S20, 445.
< U.: https://doi.org/10.1002/qua.560300739>
13c. J. Chem. Phys. 1987, 87, 467.
< U.: https://doi.org/10.1063/1.453592>
13d. J. Chem. Phys. 1988, 89, 956.
< S., Kaldor U.: https://doi.org/10.1063/1.455164>
14a. Chem. Phys. Lett. 1987, 137, 273.
< S., Rittby M., Bartlett R. J., Sinha D., Mukherjee D.: https://doi.org/10.1016/0009-2614(87)80218-X>
14b. J. Chem. Phys. 1988, 88, 4357.
< S., Rittby M., Bartlett R. J., Sinha D., Mukherjee D.: https://doi.org/10.1063/1.453795>
15. Mahapatra U. S., Datta B., Mukherjee D. in: Recent Advances in Coupled Cluster Methods (R. J. Bartlett, Ed.), p. 155. World Scientific, Singapore 1997.
16. Chem. Phys. Lett. 1993, 205, 471.
< K., Malinowski P.: https://doi.org/10.1016/0009-2614(93)87153-T>
16b. J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 829.
< K., Malinowski P.: https://doi.org/10.1088/0953-4075/27/5/003>
16c. J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1287.
< K., Malinowski P.: https://doi.org/10.1088/0953-4075/27/7/004>
16d. Int. J. Quantum Chem. 1995, 55, 269.
< K., Malinowski P.: https://doi.org/10.1002/qua.560550308>
16e. J. Phys. B: At., Mol. Opt. Phys. 1993, 26, 3035.
< P., Jankowski K.: https://doi.org/10.1088/0953-4075/26/18/014>
16f. Phys. Rev. A 1995, 51, 4583.
< P., Jankowski K.: https://doi.org/10.1103/PhysRevA.51.4583>
17. Phys. Rev. A 1985, 31, 1273.
< I.: https://doi.org/10.1103/PhysRevA.31.1273>
18a. Phys. Scr. 1990, 41, 329.
< A.-M., Ynnerman A.: https://doi.org/10.1088/0031-8949/41/3/006>
18b. Theor. Chim. Acta 1991, 80, 257.
< S. A., Hartley A. C., Liu Z. W., Mårtensson-Pendrill A.-M., Sapirstein J.: https://doi.org/10.1007/BF01117413>
18c. Rev. Mod. Phys. 1998, 70, 55.
< J.: https://doi.org/10.1103/RevModPhys.70.55>
19a. Theor. Chim. Acta 1991, 80, 427.
< U.: https://doi.org/10.1007/BF01119664>
19b. Phys. Rev. A 1994, 49, 1724.
< E., Kaldor U., Ishikawa Y.: https://doi.org/10.1103/PhysRevA.49.1724>
19c. Phys. Rev. Lett. 1995, 74, 1079.
< E., Kaldor U., Ishikawa Y.: https://doi.org/10.1103/PhysRevLett.74.1079>
19d. Chem. Phys. Lett. 1994, 230, 1.
< U., Hess B. A.: https://doi.org/10.1016/0009-2614(94)01139-7>
19e. J. Chem. Phys. 2000, 112, 1809.
< B. A., Kaldor U.: https://doi.org/10.1063/1.480744>
20a. J. Chem. Phys. 1974, 61, 5321.
< J.: https://doi.org/10.1063/1.1681883>
20b. Paldus J. in: Theoretical Chemistry: Advances and Perspectives (D. Henderson and H. Eyring, Eds), p. 131. Academic Press, New York 1976.
20c. Paldus J. in: Contemporary Mathematics, Vol. 160, p. 209. American Mathematical Society, Providence (RI) 1994.
21. Phys. Rep. 1987, 151, 93.
< I., Mukherjee D.: https://doi.org/10.1016/0370-1573(87)90073-1>
22a. Chem. Phys. Lett. 1986, 125, 207.
< D.: https://doi.org/10.1016/0009-2614(86)87050-6>
22b. Int. J. Quantum Chem., Quantum Chem. Symp. 1986, S20, 409.
< D.: https://doi.org/10.1002/qua.560300737>
23a. Phys. Scr. 1985, 32, 291.
< I.: https://doi.org/10.1088/0031-8949/32/4/009>
23b. Phys. Scr. 1985, 32, 611.
< I.: https://doi.org/10.1088/0031-8949/32/6/008>
24. Chem. Phys. 1987, 87, 5902.
W., Mukherjee D., Koch S.:
25. J. Chem. Phys. 1989, 91, 6187.
< L., Kucharski S. A., Bartlett R. J.: https://doi.org/10.1063/1.457437>
26. J. Chem. Phys. 1990, 92, 561.
< L., Bartlett R. J.: https://doi.org/10.1063/1.458406>
27a. J. Chem. Phys. 2003, 119, 5320.
< X., Paldus J.: https://doi.org/10.1063/1.1599283>
27b. J. Chem. Phys. 2003, 119, 5334.
< X., Paldus J.: https://doi.org/10.1063/1.1599302>
27c. J. Chem. Phys. 2003, 119, 5346.
< X., Paldus J.: https://doi.org/10.1063/1.1599335>
28a. Rev. Mod. Phys. 1967, 39, 771.
< B.: https://doi.org/10.1103/RevModPhys.39.771>
28b. Adv. Quantum Chem. 1977 10, 187.
< B.: https://doi.org/10.1016/S0065-3276(08)60581-X>
29a. J. Phys. B 1979, 12, 3827.
< G., Kaldor U.: https://doi.org/10.1088/0022-3700/12/23/012>
29b. Chem. Phys. 1981, 62, 419.
< G., Kaldor U.: https://doi.org/10.1016/0301-0104(81)85140-3>
29c. J. Phys. Chem. 1982, 86, 2133.
< G., Kaldor U.: https://doi.org/10.1021/j100209a005>
30a. J. Chem. Phys. 1998, 108, 6571.
< J., Hubač I., Mach P.: https://doi.org/10.1063/1.476071>
30b. J. Chem. Phys. 1999, 110, 10275.
< J., Nachtigall P., Čársky P., Mášik J., Hubač I.: https://doi.org/10.1063/1.478961>
30c. J. Chem. Phys. 2000, 112, 8779.
< I., Pittner J., Čársky P.: https://doi.org/10.1063/1.481493>
30d. J. Chem. Phys. 2000, 112, 8785.
< J. C., Pittner J., Čársky P., Hubač I.: https://doi.org/10.1063/1.481494>
30e. J. Chem. Phys. 2002, 117, 9580.
< N. D. K., Horný L., Schaefer III H. F., Hubač I.: https://doi.org/10.1063/1.1516802>
30f. J. Chem. Phys. 2002, 117, 9733.
< I. S. K., Pittner J., Čársky P., Mavridis A., Hubač I.: https://doi.org/10.1063/1.1516809>
31. J. Chem. Phys. 2003, 118, 10876.
< J.: https://doi.org/10.1063/1.1574785>
32a. J. Phys. A: Math. Gen. 1985, 18, 809.
< J. P., Durand Ph., Daudey J. P.: https://doi.org/10.1088/0305-4470/18/5/014>
32b. J. Chem. Phys. 1995, 102, 9604.
< L., Nooijen M.: https://doi.org/10.1063/1.468777>
33. Collect. Czech. Chem. Commun. 2003, 68, 105.
< L., Gryniaków J.: https://doi.org/10.1135/cccc20030105>
34a. Phys. Rev. A: At., Mol., Opt. Phys. 1984, 30, 2193.
< J., Čížek J., Takahashi M.: https://doi.org/10.1103/PhysRevA.30.2193>
34b. Phys. Rev. B: Condens. Matter 1984, 30, 4267.
< J., Takahashi M., Cho R. W. H.: https://doi.org/10.1103/PhysRevB.30.4267>
34c. Phys Rev. A 1996, 54, 1210.
< P., Toboła R., Paldus J.: https://doi.org/10.1103/PhysRevA.54.1210>
35a. Theor. Chim. Acta 1984, 89, 13.
< J., Planelles J.: https://doi.org/10.1007/BF01167279>
35b. Theor. Chim. Acta 1994, 89, 33.
< J., Paldus J., Li X.: https://doi.org/10.1007/BF01167280>
35c. Theor. Chim. Acta 1994, 89, 59.
< J., Paldus J., Li X.: https://doi.org/10.1007/BF01167281>
36. Chem. Phys. Lett. 1994, 217, 1.
< L. Z.: https://doi.org/10.1016/0009-2614(93)E1333-C>
37. J. Chem. Phys. 1997, 107, 6257.
< X., Paldus J.: https://doi.org/10.1063/1.474289>
38a. J. Chem. Phys. 1998 108, 637.
< X., Paldus J.: https://doi.org/10.1063/1.475425>
38b. J. Chem. Phys. 1999, 110, 2844.
< X., Paldus J.: https://doi.org/10.1063/1.477926>
38c. J. Chem. Phys. 2000, 113, 9966.
< X., Paldus J.: https://doi.org/10.1063/1.1323260>
38d. J. Chem. Phys. 2002, 117, 1941.
< X., Paldus J.: https://doi.org/10.1063/1.1488597>
38e. Chem. Phys. Lett. 1998, 286, 145.
< X., Paldus J.: https://doi.org/10.1016/S0009-2614(97)01132-9>
38f. Mol. Phys. 2000, 98, 1185.
< X., Paldus J.: https://doi.org/10.1080/00268970050080546>
38g. Int. J. Quantum Chem. 2000, 80, 743.
< X., Paldus J.: https://doi.org/10.1002/1097-461X(2000)80:4/5<743::AID-QUA24>3.0.CO;2-K>
39a. Top. Curr. Chem. 1999, 203, 1.
< J., Li X.: https://doi.org/10.1007/3-540-48972-X_1>
39b. Paldus J., Li X. in: Advances in Quantum Many-Body Theory (R. F. Bishop et al., Eds), Vol. 5, p. 393. World Scientific, Singapore 2002.
39c. ACS Symp. Ser. 2002, 828, 10.
< X., Paldus J.: https://doi.org/10.1021/bk-2002-0828.ch002>
40a. J. Chem. Phys. 1985, 82, 4607.
< K.: https://doi.org/10.1063/1.448718>
40b. J. Chem. Phys. 1985, 83, 4041.
< M., Noga J., Cole S. J., Bartlett R. J.: https://doi.org/10.1063/1.449067>
41a. J. Chem. Phys. 2000, 113, 18.
< K., Piecuch P.: https://doi.org/10.1063/1.481769>
41b. J. Chem. Phys. 2000, 113, 5644.
< K., Piecuch P.: https://doi.org/10.1063/1.1290609>
41c. Chem. Phys. Lett. 2001, 344, 165.
< K., Piecuch P.: https://doi.org/10.1016/S0009-2614(01)00730-8>
41d. Chem. Phys. Lett. 2001, 344, 176.
< P., Kucharski S. A., Kowalski K.: https://doi.org/10.1016/S0009-2614(01)00759-X>
41e. J. Mol. Struct. (THEOCHEM) 2001, 547, 191.
< K., Piecuch P.: https://doi.org/10.1016/S0166-1280(01)00470-5>
42. J. Chem. Phys. 2003, 118, 6769.
< J., Li X.: https://doi.org/10.1063/1.1560133>