Collect. Czech. Chem. Commun.
2004, 69, 90-104
https://doi.org/10.1135/cccc20040090
Can We Avoid the Intruder-State Problems in the State-Universal Coupled-Cluster Approaches While Preserving Size Extensivity?
Josef Paldus and Xiangzhu Li
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
References
1a. J.: J. Chem. Phys. 1966, 45, 4256.
<https://doi.org/10.1063/1.1727484>
1b. J.: Adv. Chem. Phys. 1969, 14, 35.
2. J., Čížek J., Shavitt I.: Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 50.
<https://doi.org/10.1103/PhysRevA.5.50>
3. Bartlett R. J. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.), Part I, p. 1047. World Scientific, Singapore 1995.
4. J., Li X.: Adv. Chem. Phys. 1999, 110, 1.
<https://doi.org/10.1002/9780470141694.ch1>
5a. Coester F. in: Lectures in Theoretical Physics (K. T. Mahanthappa and W. E. Brittin, Eds), Vol. 11B, p. 157. Gordon and Breach, New York 1969.
5b. I.: Int. J. Quantum Chem., Quantum Chem. Symp. 1978, S12, 33.
5c. D., Moitra R. K., Mukhopadhyay A.: Mol. Phys. 1977, 33, 955.
<https://doi.org/10.1080/00268977700100871>
5d. A., Mukherjee D.: J. Chem. Phys. 1984, 80, 5058.
<https://doi.org/10.1063/1.446574>
5e. I., Mukherjee D.: Phys. Rep. 1987, 151, 93.
<https://doi.org/10.1016/0370-1573(87)90073-1>
6. B., Paldus J.: J. Chem. Phys. 1989, 90, 2714.
<https://doi.org/10.1063/1.455919>
7. B., Monkhorst H. J.: Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.
<https://doi.org/10.1103/PhysRevA.24.1668>
8. Lindgren I., Morrison J.: Atomic Many-Body Theory. Springer-Verlag, Berlin 1982.
9. D., Pal S.: Adv. Quantum Chem. 1989, 20, 292.
10. Paldus J. in: Methods in Computational Molecular Physics; NATO Advanced Study Institute, Series B: Physics (S. Wilson and G. H. F. Diercksen, Eds), Vol. 293, p. 99. Plenum Press, New York 1992.
11. Paldus J. in: Relativistic and Electron Correlation Effects in Molecules and Solids; NATO Advanced Study Institute, Series B: Physics (G. L. Malli, Ed.), Vol. 318, p. 207. Plenum Press, New York 1994.
12. Paldus J. in: Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, Ed.), Vol. 2, Part 3, Chap. 19, p. 272. John Wiley, Chichester 2003.
13a. U., Haque A.: Chem. Phys. Lett. 1986, 128, 45.
<https://doi.org/10.1016/0009-2614(86)80142-7>
13b. U.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, S20, 445.
<https://doi.org/10.1002/qua.560300739>
13c. U.: J. Chem. Phys. 1987, 87, 467.
<https://doi.org/10.1063/1.453592>
13d. S., Kaldor U.: J. Chem. Phys. 1988, 89, 956.
<https://doi.org/10.1063/1.455164>
14a. S., Rittby M., Bartlett R. J., Sinha D., Mukherjee D.: Chem. Phys. Lett. 1987, 137, 273.
<https://doi.org/10.1016/0009-2614(87)80218-X>
14b. S., Rittby M., Bartlett R. J., Sinha D., Mukherjee D.: J. Chem. Phys. 1988, 88, 4357.
<https://doi.org/10.1063/1.453795>
15. Mahapatra U. S., Datta B., Mukherjee D. in: Recent Advances in Coupled Cluster Methods (R. J. Bartlett, Ed.), p. 155. World Scientific, Singapore 1997.
16. K., Malinowski P.: Chem. Phys. Lett. 1993, 205, 471.
<https://doi.org/10.1016/0009-2614(93)87153-T>
16b. K., Malinowski P.: J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 829.
<https://doi.org/10.1088/0953-4075/27/5/003>
16c. K., Malinowski P.: J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1287.
<https://doi.org/10.1088/0953-4075/27/7/004>
16d. K., Malinowski P.: Int. J. Quantum Chem. 1995, 55, 269.
<https://doi.org/10.1002/qua.560550308>
16e. P., Jankowski K.: J. Phys. B: At., Mol. Opt. Phys. 1993, 26, 3035.
<https://doi.org/10.1088/0953-4075/26/18/014>
16f. P., Jankowski K.: Phys. Rev. A 1995, 51, 4583.
<https://doi.org/10.1103/PhysRevA.51.4583>
17. I.: Phys. Rev. A 1985, 31, 1273.
<https://doi.org/10.1103/PhysRevA.31.1273>
18a. A.-M., Ynnerman A.: Phys. Scr. 1990, 41, 329.
<https://doi.org/10.1088/0031-8949/41/3/006>
18b. S. A., Hartley A. C., Liu Z. W., Mårtensson-Pendrill A.-M., Sapirstein J.: Theor. Chim. Acta 1991, 80, 257.
<https://doi.org/10.1007/BF01117413>
18c. J.: Rev. Mod. Phys. 1998, 70, 55.
<https://doi.org/10.1103/RevModPhys.70.55>
19a. U.: Theor. Chim. Acta 1991, 80, 427.
<https://doi.org/10.1007/BF01119664>
19b. E., Kaldor U., Ishikawa Y.: Phys. Rev. A 1994, 49, 1724.
<https://doi.org/10.1103/PhysRevA.49.1724>
19c. E., Kaldor U., Ishikawa Y.: Phys. Rev. Lett. 1995, 74, 1079.
<https://doi.org/10.1103/PhysRevLett.74.1079>
19d. U., Hess B. A.: Chem. Phys. Lett. 1994, 230, 1.
<https://doi.org/10.1016/0009-2614(94)01139-7>
19e. B. A., Kaldor U.: J. Chem. Phys. 2000, 112, 1809.
<https://doi.org/10.1063/1.480744>
20a. J.: J. Chem. Phys. 1974, 61, 5321.
<https://doi.org/10.1063/1.1681883>
20b. Paldus J. in: Theoretical Chemistry: Advances and Perspectives (D. Henderson and H. Eyring, Eds), p. 131. Academic Press, New York 1976.
20c. Paldus J. in: Contemporary Mathematics, Vol. 160, p. 209. American Mathematical Society, Providence (RI) 1994.
21. I., Mukherjee D.: Phys. Rep. 1987, 151, 93.
<https://doi.org/10.1016/0370-1573(87)90073-1>
22a. D.: Chem. Phys. Lett. 1986, 125, 207.
<https://doi.org/10.1016/0009-2614(86)87050-6>
22b. D.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, S20, 409.
<https://doi.org/10.1002/qua.560300737>
23a. I.: Phys. Scr. 1985, 32, 291.
<https://doi.org/10.1088/0031-8949/32/4/009>
23b. I.: Phys. Scr. 1985, 32, 611.
<https://doi.org/10.1088/0031-8949/32/6/008>
24. W., Mukherjee D., Koch S.: Chem. Phys. 1987, 87, 5902.
25. L., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1989, 91, 6187.
<https://doi.org/10.1063/1.457437>
26. L., Bartlett R. J.: J. Chem. Phys. 1990, 92, 561.
<https://doi.org/10.1063/1.458406>
27a. X., Paldus J.: J. Chem. Phys. 2003, 119, 5320.
<https://doi.org/10.1063/1.1599283>
27b. X., Paldus J.: J. Chem. Phys. 2003, 119, 5334.
<https://doi.org/10.1063/1.1599302>
27c. X., Paldus J.: J. Chem. Phys. 2003, 119, 5346.
<https://doi.org/10.1063/1.1599335>
28a. B.: Rev. Mod. Phys. 1967, 39, 771.
<https://doi.org/10.1103/RevModPhys.39.771>
28b. B.: Adv. Quantum Chem. 1977 10, 187.
<https://doi.org/10.1016/S0065-3276(08)60581-X>
29a. G., Kaldor U.: J. Phys. B 1979, 12, 3827.
<https://doi.org/10.1088/0022-3700/12/23/012>
29b. G., Kaldor U.: Chem. Phys. 1981, 62, 419.
<https://doi.org/10.1016/0301-0104(81)85140-3>
29c. G., Kaldor U.: J. Phys. Chem. 1982, 86, 2133.
<https://doi.org/10.1021/j100209a005>
30a. J., Hubač I., Mach P.: J. Chem. Phys. 1998, 108, 6571.
<https://doi.org/10.1063/1.476071>
30b. J., Nachtigall P., Čársky P., Mášik J., Hubač I.: J. Chem. Phys. 1999, 110, 10275.
<https://doi.org/10.1063/1.478961>
30c. I., Pittner J., Čársky P.: J. Chem. Phys. 2000, 112, 8779.
<https://doi.org/10.1063/1.481493>
30d. J. C., Pittner J., Čársky P., Hubač I.: J. Chem. Phys. 2000, 112, 8785.
<https://doi.org/10.1063/1.481494>
30e. N. D. K., Horný L., Schaefer III H. F., Hubač I.: J. Chem. Phys. 2002, 117, 9580.
<https://doi.org/10.1063/1.1516802>
30f. I. S. K., Pittner J., Čársky P., Mavridis A., Hubač I.: J. Chem. Phys. 2002, 117, 9733.
<https://doi.org/10.1063/1.1516809>
31. J.: J. Chem. Phys. 2003, 118, 10876.
<https://doi.org/10.1063/1.1574785>
32a. J. P., Durand Ph., Daudey J. P.: J. Phys. A: Math. Gen. 1985, 18, 809.
<https://doi.org/10.1088/0305-4470/18/5/014>
32b. L., Nooijen M.: J. Chem. Phys. 1995, 102, 9604.
<https://doi.org/10.1063/1.468777>
33. L., Gryniaków J.: Collect. Czech. Chem. Commun. 2003, 68, 105.
<https://doi.org/10.1135/cccc20030105>
34a. J., Čížek J., Takahashi M.: Phys. Rev. A: At., Mol., Opt. Phys. 1984, 30, 2193.
<https://doi.org/10.1103/PhysRevA.30.2193>
34b. J., Takahashi M., Cho R. W. H.: Phys. Rev. B: Condens. Matter 1984, 30, 4267.
<https://doi.org/10.1103/PhysRevB.30.4267>
34c. P., Toboła R., Paldus J.: Phys Rev. A 1996, 54, 1210.
<https://doi.org/10.1103/PhysRevA.54.1210>
35a. J., Planelles J.: Theor. Chim. Acta 1984, 89, 13.
<https://doi.org/10.1007/BF01167279>
35b. J., Paldus J., Li X.: Theor. Chim. Acta 1994, 89, 33.
<https://doi.org/10.1007/BF01167280>
35c. J., Paldus J., Li X.: Theor. Chim. Acta 1994, 89, 59.
<https://doi.org/10.1007/BF01167281>
36. L. Z.: Chem. Phys. Lett. 1994, 217, 1.
<https://doi.org/10.1016/0009-2614(93)E1333-C>
37. X., Paldus J.: J. Chem. Phys. 1997, 107, 6257.
<https://doi.org/10.1063/1.474289>
38a. X., Paldus J.: J. Chem. Phys. 1998 108, 637.
<https://doi.org/10.1063/1.475425>
38b. X., Paldus J.: J. Chem. Phys. 1999, 110, 2844.
<https://doi.org/10.1063/1.477926>
38c. X., Paldus J.: J. Chem. Phys. 2000, 113, 9966.
<https://doi.org/10.1063/1.1323260>
38d. X., Paldus J.: J. Chem. Phys. 2002, 117, 1941.
<https://doi.org/10.1063/1.1488597>
38e. X., Paldus J.: Chem. Phys. Lett. 1998, 286, 145.
<https://doi.org/10.1016/S0009-2614(97)01132-9>
38f. X., Paldus J.: Mol. Phys. 2000, 98, 1185.
<https://doi.org/10.1080/00268970050080546>
38g. X., Paldus J.: Int. J. Quantum Chem. 2000, 80, 743.
<https://doi.org/10.1002/1097-461X(2000)80:4/5<743::AID-QUA24>3.0.CO;2-K>
39a. J., Li X.: Top. Curr. Chem. 1999, 203, 1.
<https://doi.org/10.1007/3-540-48972-X_1>
39b. Paldus J., Li X. in: Advances in Quantum Many-Body Theory (R. F. Bishop et al., Eds), Vol. 5, p. 393. World Scientific, Singapore 2002.
39c. X., Paldus J.: ACS Symp. Ser. 2002, 828, 10.
<https://doi.org/10.1021/bk-2002-0828.ch002>
40a. K.: J. Chem. Phys. 1985, 82, 4607.
<https://doi.org/10.1063/1.448718>
40b. M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041.
<https://doi.org/10.1063/1.449067>
41a. K., Piecuch P.: J. Chem. Phys. 2000, 113, 18.
<https://doi.org/10.1063/1.481769>
41b. K., Piecuch P.: J. Chem. Phys. 2000, 113, 5644.
<https://doi.org/10.1063/1.1290609>
41c. K., Piecuch P.: Chem. Phys. Lett. 2001, 344, 165.
<https://doi.org/10.1016/S0009-2614(01)00730-8>
41d. P., Kucharski S. A., Kowalski K.: Chem. Phys. Lett. 2001, 344, 176.
<https://doi.org/10.1016/S0009-2614(01)00759-X>
41e. K., Piecuch P.: J. Mol. Struct. (THEOCHEM) 2001, 547, 191.
<https://doi.org/10.1016/S0166-1280(01)00470-5>
42. J., Li X.: J. Chem. Phys. 2003, 118, 6769.
<https://doi.org/10.1063/1.1560133>

