Collect. Czech. Chem. Commun.
2004, 69, 189-212
https://doi.org/10.1135/cccc20040189
A Coupled Cluster Study of van der Waals Interactions of the He Atom with CN, NO and O2 Radicals
Juraj Raaba, Andrej Antušeka,b, Stanislav Biskupičc and Miroslav Urbana,*
a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovakia
b Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-842 36 Bratislava, Slovakia
c Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
References
1. Hobza P., Zahradník R.: Intermolecular Complexes (The Role of van der Waals Systems in Physical Chemistry and in Biodisciplines). Elsevier, Amsterdam 1988.
2. P., Zahradník R.: Chem. Rev. 1988, 88, 871.
<https://doi.org/10.1021/cr00088a004>
3. G., Szcześniak M. M.: Chem. Rev. 2000, 100, 4227.
<https://doi.org/10.1021/cr990048z>
4. J. V., Zahradník R., Hobza P., Urban M.: Mol. Phys. 1996, 89, 425.
<https://doi.org/10.1080/00268979609482483>
5. K. R., Fraser G. T., Novick S. E., Klemperer W.: Chem. Rev. 1994, 94, 1807.
<https://doi.org/10.1021/cr00031a004>
6. D. J.: Annu. Rev. Phys. Chem. 1994, 45, 367.
<https://doi.org/10.1146/annurev.pc.45.100194.002055>
7. R. C., Saykally R. J.: J. Phys. Chem. 1992, 96, 1024.
<https://doi.org/10.1021/j100182a006>
8. J. M.: Annu. Rev. Phys. Chem. 1993, 41, 423.
9. Z., Miller R. E.: J. Phys. Chem. 1996, 100, 12945.
<https://doi.org/10.1021/jp960574j>
10. N., Ali A., Dagdigian P. J.: Chem. Phys. Lett. 1986, 125, 561.
<https://doi.org/10.1016/0009-2614(86)87099-3>
11. N., Ali A., Dagdigian P. J.: J. Chem. Phys. 1986, 85, 3860.
<https://doi.org/10.1063/1.450906>
12. G., Ali A., Dagdigian P. J.: J. Chem. Phys. 1986, 85, 7098.
<https://doi.org/10.1063/1.451396>
13. A., Jihua G., Dagdigian P. J.: J. Chem. Phys. 1987, 87, 2045.
<https://doi.org/10.1063/1.453179>
14. H. J., Follmeg B., Alexander M. H.: J. Chem. Phys. 1988, 89, 3139.
<https://doi.org/10.1063/1.454971>
15. J. B., Huong Y., Titauchuk T.: Astrophys. Space Sci. 1996, 236, 11.
<https://doi.org/10.1007/BF00644317>
16. P., Dyke J. M., Wright T. G.: J. Chem. Soc. 1998, 94, 629.
17. T. N., Kotake S.: J. Chem. Phys. 1993, 99, 2855.
<https://doi.org/10.1063/1.465194>
18. P. D. A., Western C. M., Howard B. J.: J. Phys. Chem. 1986, 90, 4961.
<https://doi.org/10.1021/j100412a019>
19. M., Alexander M. H.: J. Chem. Phys. 1995, 103, 6973.
<https://doi.org/10.1063/1.470323>
20. E. P. F., Wright T. G.: J. Chem. Phys. 1998, 109, 157.
<https://doi.org/10.1063/1.476533>
21. J., Chalasiński G., Berry M. T., Bukowski R., Cybulski S. M.: J. Chem. Phys. 2000, 112, 2195.
<https://doi.org/10.1063/1.480785>
22. J. H., Duijneveldt F. B.: J. Chem. Phys. 1984, 81, 3168.
<https://doi.org/10.1063/1.448021>
23. R., Staemmler V.: J. Chem. Phys. 1986, 101, 243.
24. S. M., Burcl R., Szceśniak M. M., Chalasiński G.: J. Chem. Phys. 1996, 104, 7997.
<https://doi.org/10.1063/1.471516>
25. M., Slankas J. T., Kuppermann A.: J. Chem. Phys. 1979, 70, 541.
<https://doi.org/10.1063/1.437168>
26. M., Kohl K. H., Toennies J. P., Gianturco F. A.: J. Chem. Phys. 1983, 78, 5629.
<https://doi.org/10.1063/1.445443>
27. L., Casavecchia P., Pirani F., Vecchiocattivi F., Volpi G. G., Brocks G., van der Avoird A., Heijmen B., Reuss J.: J. Chem. Phys. 1991, 95, 195.
<https://doi.org/10.1063/1.461475>
28. V., Ascenzi D., Cappelletti D., Pirani F.: Nature (London) 1994, 371, 399.
<https://doi.org/10.1038/371399a0>
29. V., Ascenzi D., de Castro Vítores, Pirani F., Cappelletti D.: J. Chem. Phys. 1999, 111, 2620.
<https://doi.org/10.1063/1.479537>
30. J. R., Nesbitt D. J.: J. Chem. Phys. 1999, 111, 6821.
<https://doi.org/10.1063/1.479975>
31. G. C., Struniewicz I. M.: J. Chem. Phys. 2000, 113, 9562.
<https://doi.org/10.1063/1.1321311>
32. V., Laurinc V., Biskupič S.: J. Comput. Chem. 1999, 20, 857.
<https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<857::AID-JCC10>3.0.CO;2-#>
33. Buckingham A. D. in: Intermolecular Interactions: From Diatomics to Biopolymers (B. Pullman, Ed.), p. 1. Willey, New York 1978.
34. G., Gutowski M.: Chem. Rev. 1988, 88, 943.
<https://doi.org/10.1021/cr00088a007>
35. G., Szcześniak M. M.: Chem. Rev. 1994, 94, 1723.
<https://doi.org/10.1021/cr00031a001>
36. I., Lukeš V., Laurinc V., Biskupič S.: J. Phys. Chem. 2000, 104, 96.
<https://doi.org/10.1021/jp992485n>
37. M., Neogrády P., Raab J., Diercksen G. H. D.: Collect. Czech. Chem. Commun. 1998, 63, 1409.
<https://doi.org/10.1135/cccc19981409>
38. M., Urban M., Kellö V., Diercksen G. H. F.: J. Mol. Struct. (THEOCHEM) 2001, 547, 219.
<https://doi.org/10.1016/S0166-1280(01)00472-9>
39. P., Medveď M., Černušák I., Urban M.: Mol. Phys. 2002, 100, 541.
<https://doi.org/10.1080/00268970110095660>
40. S. F., Bernardi F.: Mol. Phys. 1970, 19, 553.
<https://doi.org/10.1080/00268977000101561>
41. K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1985, 157, 479.
<https://doi.org/10.1016/S0009-2614(89)87395-6>
42. M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041.
<https://doi.org/10.1063/1.449067>
43. P., Urban M.: Int. J. Quantum Chem. 1995, 55, 187.
<https://doi.org/10.1002/qua.560550214>
44. P. J., Hampel C., Werner H.-J.: J. Chem. Phys. 1993, 99, 5219.
<https://doi.org/10.1063/1.465990>
45. P., Gauss J.: J. Chem. Phys. 1997, 107, 9028.
<https://doi.org/10.1063/1.475220>
46a. J.: J. Chem. Phys. 1977, 67, 303.
<https://doi.org/10.1063/1.434526>
46b. X., Paldus J.: J. Chem. Phys. 1997, 102, 2012.
47. C. L., Schaefer III H. F.: Theor. Chim. Acta 1991, 79, 1.
<https://doi.org/10.1007/BF01113327>
48. P., Urban M., Hubač I.: J. Chem. Phys. 1994, 100, 3706.
<https://doi.org/10.1063/1.466359>
49. Andersson K., Barysz M., Bernhardsson A., Blomberg M. R. A., Cooper D. L., Fleig T., Fülscher M. P., de Graaf C., Hess B. A., Karlström G., Lindh R., Malmqvist P.-Å., Neogrády P., Olsen J., Roos B. O., Sadlej A. J., Schütz M., Schimmelpfennig B., Seijo L., Serrano-Andrés L., Siegbahn P. E. M., Stalring J., Thorsteinsson T., Veryazov V., Widmark P.-O.: MOLCAS, Version 5. Lund University, Lund 2000.
50. T. H., Jr.: J. Chem. Phys. 1989, 90, 1007.
<https://doi.org/10.1063/1.456153>
51a. D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975.
<https://doi.org/10.1063/1.466439>
51b. R. A., Dunning T. H., Jr., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796.
<https://doi.org/10.1063/1.462569>
52. D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975.
<https://doi.org/10.1063/1.466439>
53. T., Dunning T. H., Jr.: Mol. Phys. 1999, 96, 529.
<https://doi.org/10.1080/00268979909482990>
54. Huber K. P., Herzberg H.: Molecular Spectra and Structure, Vol. IV. Van Nostrand Reinhold, New York 1979.
55. H. L., Mas E. M., Szalewicz K., Jeziorski B.: J. Chem. Phys. 1995, 103, 7374.
<https://doi.org/10.1063/1.470309>
56. M., Bukowski R., Cencek W., Jaszunski M., Jeziorski B., Szalewicz K.: Collect. Czech. Chem. Commun. 2003, 68, 463.
<https://doi.org/10.1135/cccc20030463>
57. A., Helgaker T., Jorgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.: Chem. Phys. Lett. 1998, 286, 243.
<https://doi.org/10.1016/S0009-2614(98)00111-0>
58. L., Zahradník R.: Helv. Chim. Acta 2001, 84, 1328.
<https://doi.org/10.1002/1522-2675(20010613)84:6<1328::AID-HLCA1328>3.0.CO;2-0>
59. A., Koch H., Jorgensen P., Christiansen O.: Chem. Phys. Lett. 1992, 200, 113.
60. M. H.: J. Chem. Phys. 1999, 111, 7426.
<https://doi.org/10.1063/1.480066>
61. A. I. M.: Mol. Phys. 1975, 29, 467.
<https://doi.org/10.1080/00268977500100401>
62. B., Moszynski R., Szalewicz K.: Chem. Rev. 1994, 94, 1887.
<https://doi.org/10.1021/cr00031a008>
63. J., Sun H.: Mol. Phys. 2001, 99, 1867.
<https://doi.org/10.1080/00268970110078326>

