Collect. Czech. Chem. Commun.
2004, 69, 2147-2173
https://doi.org/10.1135/cccc20042147
Hydrogen Bonding Contribution to Lipophilicity Parameters. Hydrogen Acceptor and Hydrogen Acceptor Donor Parameters
Marvin Charton* and Barbara I. Charton
Chemical Department, Pratt Institute, Brooklyn, NY 11205, U.S.A.
References
1. Charton M. in: The Chemistry of Arsenic, Antimony and Bismuth (S. Patai, Ed.), pp. 367–439. Wiley, New York 1994.
2. M., Charton B. I.: J. Org. Chem. 1979, 44, 2284.
<https://doi.org/10.1021/jo01327a055>
3. Charton M. in: QSAR in Design of Bioactive Compounds (M. Kuchar, Ed.), pp. 41–51. J. R. Prous, Barcelona 1985.
4. Charton M. in: Rational Approaches to the Synthesis of Pesticides (P. S. Magee, J. J. Menn and G. K. Koan, Eds), pp. 247–278. American Chemical Society, Washington, D.C. 1984.
5. M., Ziffer H.: J. Org. Chem. 1987, 52, 2400.
<https://doi.org/10.1021/jo00388a012>
6. T. K., Pearce E. M., Pennacchia J. R., Charton M.: Macromolecules 1987, 20, 1174.
<https://doi.org/10.1021/ma00171a055>
7. M.: J. Polym. Sci., Part A: Polym. Chem. 1988, 26, 1265.
<https://doi.org/10.1002/pola.1988.080260501>
8a. Charton M. in: Trends in Medicinal Chemistry ′88 (H. van der Goot, G. Domany, L. Pallos and H. Timmerman, Eds), pp. 89–108. Elsevier, Amsterdam 1989.
8b. Charton M. in: Classical and 3-D QSAR in Agrochemistry and Toxicology (C. Hansch and T. Fujita, Eds), pp. 75–95. American Chemical Society, Washington, D.C. 1995.
8c. M.: Adv. Quant. Struct. Prop. Relationships 2002, 3, 137.
<https://doi.org/10.1016/S1874-527X(02)80007-X>
9. M.: Prog. Phys. Org. Chem. 1990, 18, 163.
<https://doi.org/10.1002/9780470171974.ch5>
10. Vinogradov S. M., Linnell R. H.: Hydrogen Bonding. Van Nostrand Reinhold, New York 1971.
11. Jeffrey G. J., Saenger W.: Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin 1991.
12. C., Dunn W. J.: J. Pharm. Sci. 1972, 61, 1.
<https://doi.org/10.1002/jps.2600610102>
13. P.: Eur. J. Med. Chem. 1974, 9, 473.
14. I., Kanada Y., Katsuichiro K.: Chem. Pharm. Bull. 1976, 24, 1799.
<https://doi.org/10.1248/cpb.24.1799>
15. M., Charton B. I.: J. Theor. Biol. 1982, 99, 629.
<https://doi.org/10.1016/0022-5193(82)90191-6>
16. M. J., Abboud J. L. M., Taft R. W.: Prog. Phys. Org. Chem. 1981, 13, 485.
<https://doi.org/10.1002/9780470171929.ch6>
17. M. H.: Chem. Soc. Rev. 1993, 22, 73.
<https://doi.org/10.1039/cs9932200073>
18. O. A.: Russ. Chem. Rev. 1999, 68, 505.
<https://doi.org/10.1070/RC1999v068n06ABEH000425>
19. C., Berthelot M.: Perspect. Drug Discovery Des. 2000, 18, 39.
<https://doi.org/10.1023/A:1008743229409>
20. N., Testa B., Carrupt P. A.: J. Phys. Chem. 1992, 96, 1455.
<https://doi.org/10.1021/j100182a078>
21. S., Caron G., Ermondi G., Gaillard P., Pagliara A., Carrupt P. A., Testa B.: J. Mol. Graphics Mod. 2001, 19, 521.
<https://doi.org/10.1016/S1093-3263(00)00105-4>
22. M.: Stud. Org. Chem. 1992, 42, 629.

