Collect. Czech. Chem. Commun. 2004, 69, 2174-2182
https://doi.org/10.1135/cccc20042174

Kinetics and Mechanism of the Aminolysis of S-Aryl O-Ethyl Dithiocarbonates in Acetonitrile

Hyuck Keun Oha, Ji Young Oha, Dae Dong Sungb and Ikchoon Leeb,c,*

a Department of Chemistry, Chonbuk National University, Chonju 560-756, Korea
b Department of Chemistry, Dong-A University, Busan 604-714, Korea
c Department of Chemistry, Inha University, Inchon 402-751, Korea

References

1a. Jencks W. P.: Chem. Rev. 1985, 85, 511. <https://doi.org/10.1021/cr00070a001>
1b. Gresser M., Jencks W. P.: J. Am. Chem. Soc. 1977, 99, 6963. <https://doi.org/10.1021/ja00463a032>
1c. Gresser M., Jencks W. P.: J. Am. Chem. Soc. 1977, 99, 6970. <https://doi.org/10.1021/ja00463a033>
1d. Castro E. A., Ureta C.: J. Org. Chem. 1989, 54, 2153. <https://doi.org/10.1021/jo00270a026>
1e. Castro E. A., Ureta C.: J. Org. Chem. 1990, 55, 1676. <https://doi.org/10.1021/jo00292a051>
1f. Koh H. J., Han K. L., Lee I.: J. Org. Chem. 1999, 64, 4783. <https://doi.org/10.1021/jo990115p>
1g. Oh H. K., Ku M. H., Lee H. W., Lee I.: J. Org. Chem. 2002, 67, 3874. <https://doi.org/10.1021/jo025637a>
2. Castro E. A., Munoz P., Santos J. G.: J. Org. Chem. 1999, 64, 8298. <https://doi.org/10.1021/jo991036g>
3a. Castro E. A., Ibanez F., Salas M., Santos J. G.: J. Org. Chem. 1991, 56, 4819. <https://doi.org/10.1021/jo00016a002>
3b. Castro E. A., Salas M., Santos J. G.: J. Org. Chem. 1994, 59, 30. <https://doi.org/10.1021/jo00080a008>
4a. Lee I.: Adv. Phys. Org. Chem. 1992, 27, 57. <https://doi.org/10.1016/S0065-3160(08)60064-7>
4b. Lee I.: Chem. Soc. Rev. 1990, 19, 317. <https://doi.org/10.1039/cs9901900317>
4c. Lee I., Lee H. W.: Collect. Czech. Chem. Commun. 1999, 64, 1529. <https://doi.org/10.1135/cccc19991529>
5. Koh H. J., Lee J.-W., Lee H. W., Lee I.: Can. J. Chem. 1998, 76, 710. <https://doi.org/10.1139/cjc-76-6-710>
6a. Oh H. K., Lee Y. H., Lee I.: Int. J. Chem. Kinet. 2000, 32, 131. <https://doi.org/10.1002/(SICI)1097-4601(2000)32:3<131::AID-KIN2>3.0.CO;2-C>
6b. Oh H. K., Lee J.-Y., Park Y. S., Lee I.: Int. J. Chem. Kinet. 1998, 30, 419. <https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V>
7a. Coetzee J. F.: Prog. Phys. Org. Chem. 1965, 4, 45. <https://doi.org/10.1002/9780470171837.ch2>
7b. Spillane W. J., Hogan G., McGrath P., King J., Brack C.: J. Chem. Soc., Perkin Trans. 2 1996, 2099. <https://doi.org/10.1039/p29960002099>
7c. Lee I., Kim C. K., Han I. S., Lee H. W., Kim W. K., Kim Y. B.: J. Phys. Chem. B 1999, 103, 7302. <https://doi.org/10.1021/jp991115w>
8. Assuming pKa (H2O) vs σ plots for phenols and thiophenols have similar slopes (ρ ≈ 2.0), βZ (with pKa (MeCN))/βZ (with pKa (H2O)) ≈ 0.62. Literature1e and Oh H. J., Park J. E., Sung D. D., Lee I.: J. Org. Chem. 2004, 69, 3150. <https://doi.org/10.1021/jo049845+>
9. Oh H. K., Woo S. Y., Shin C. H., Park Y. S., Lee I.: J. Org. Chem. 1997, 62, 5780. <https://doi.org/10.1021/jo970413r>
10. Oh H. K., Shin C. H., Lee I.: Bull. Korean Chem. Soc. 1995, 16, 657.
11. Lee I., Kim C. K., Li H. G., Sohn C. K., Kim C. K., Lee H. W., Lee B.-S.: J. Am. Chem. Soc. 2000, 122, 11162. <https://doi.org/10.1021/ja001814i>
12a. Reed A. E., Curtiss L. A., Weinhold F.: Chem. Rev. 1998, 88, 899. <https://doi.org/10.1021/cr00088a005>
12b. Epiotis N. D., Cherry W. R., Shaik S., Yates R., Bernardi F.: Structural Theory of Organic Chemistry, Part I. Springer-Verlag, Berlin 1977.
12c. Lee I.: Int. Rev. Phys. Chem. 2003, 22, 263. <https://doi.org/10.1080/0144235031000086058>
13a. Skoog M. T., Jencks W. P.: J. Am. Chem. Soc. 1984, 106, 7597. <https://doi.org/10.1021/ja00336a047>
13b. Bourne N., Williams A.: J. Am. Chem. Soc. 1984, 106, 7591. <https://doi.org/10.1021/ja00336a046>
14. Ba-Saif S., Luthra A. K., Williams A.: J. Am. Chem. Soc. 1989, 111, 2647. <https://doi.org/10.1021/ja00189a045>
15. This work.
16. Castro E. A., Ibanez F., Salas M., Santos J. G., Sepulveda P.: J. Org. Chem. 1993, 58, 459. <https://doi.org/10.1021/jo00054a033>
17. Castro E. A., Pizarro M. I., Santos J. G.: J. Org. Chem. 1996, 61, 5982. <https://doi.org/10.1021/jo960781f>
18. Castro E. A., Araneda C. A., Santos J. G.: J. Org. Chem. 1997, 62, 126. <https://doi.org/10.1021/jo961275t>
19. Castro E. A., Leandro L., Millan P., Santos J. G.: J. Org. Chem. 1999, 64, 1953. <https://doi.org/10.1021/jo982063u>
20a. Lee I., Sung D. D.: Curr. Org. Chem. 2004, 8, 557. <https://doi.org/10.2174/1385272043370753>
20b. Oh H. K., Kim I. K., Sung D. D., Lee I.: Org. Biomol. Chem. 2004, 2, 1213.
21. Lee I.: Chem. Soc. Rev. 1995, 24, 223. <https://doi.org/10.1039/cs9952400223>
22. Isaacs N. S.: Physical Organic Chemistry, 2nd ed., Chap. 10. Longman, Harlow 1995.
23. Castro E. A., Cubillos M., Ibanez F., Moraga I., Santos J. G.: J. Org. Chem. 1993, 58, 5400. <https://doi.org/10.1021/jo00072a022>