Collect. Czech. Chem. Commun.
2004, 69, 2281-2296
https://doi.org/10.1135/cccc20042281
The Solvent Effects on Kinetics and Mechanism of Zinc or Cadmium Halide Catalyzed Reactions of Hydrosilanes with Hydroxylic Reagents
Jerzy J. Chruściel
Institute of Polymer and Dye Technology, Faculty of Chemistry, Technical University, 90-924 Łódź 40, Poland
References
1. Eaborn C.: Organosilicon Compounds. Butterworth, London 1960.
2. Sommer L. H.: Stereochemistry, Mechanism and Silicon. McGraw–Hill, New York 1965.
3. Intra-Sci. Chem. Rep. 1973, 7, 1.
L. H.:
4. Int. Rev. Sci., Inorg. Chem., Ser. One 1973, 9, 353.
H.:
5. J. Organomet. Chem. 1974, 74, 1.
< R. J. P., Henner M.: https://doi.org/10.1016/S0022-328X(00)83756-0>
6a. J. Organomet. Chem. 1980, 198, 231.
< R. J. P., Guerin C.: https://doi.org/10.1016/S0022-328X(00)92857-2>
6b. Adv. Organomet. Chem. 1982, 20, 265.
< R. J. P., Guerin C.: https://doi.org/10.1016/S0065-3055(08)60523-7>
7. Top. Stereochem. 1984, 15, 43.
< R. J. P., Guerin C., Moreau J. J. E.: https://doi.org/10.1002/9780470147245.ch2>
8. Corriu R. J. P., Guerin C., Moreau J. J. E. in: The Chemistry of Organic Silicon Compounds (S. Patai and Z. Rappoport, Eds), p. 305. Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore 1989.
9. Corriu R. J. P., Guerin C., Moreau J. J. E. in: The Chemistry of Organic Silicon Compounds (S. Patai and Z. Rappoport, Eds), p. 1241. Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore 1989.
10. Chem. Rev. 1993, 93, 1371.
< C., Corriu R. J. P., Reye C., Young C.: https://doi.org/10.1021/cr00020a003>
11a. Bassindale A. R., Taylor P. G. in: The Chemistry of Organic Silicon Compounds (S. Patai and Z. Rappoport, Eds), p. 839. Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore 1989.
11b. Bassindale A. R. in: Organosilicon Chemistry, Proceedings of the Xth International Symposium, Poznań 1993 (B. Marciniec and J. Chojnowski, Eds), p. 191. Gordon & Breach Sci. Publ., Amsterdam 1995.
12. J. Organomet. Chem. 1978, 144, 147.
E., Dzintara M.:
13. Noll W.: Chemie und Technologie der Silicone, 2nd ed. Verlag Chemie, GmbH, Weinheim 1968.
14a. Tetrahedron Lett. 1999, 40, 4127.
< B. P. S., Boudjouk P.: https://doi.org/10.1016/S0040-4039(99)00723-6>
14b. Org. Lett. 2000, 2, 1027.
< M., Chauhan B. P. S., Boudjouk P.: https://doi.org/10.1021/ol005507t>
14c. Organometallics 2001, 20, 2725.
< B. P. S., Ready T., Al-Badri Z., Boudjouk P.: https://doi.org/10.1021/om000339u>
15. J. Organomet. Chem. 2003, 686, 101.
< I., Bjerke-Kroll B., West R.: https://doi.org/10.1016/S0022-328X(03)00672-7>
16. J. Am. Chem. Soc. 1947, 69, 2600.
< F. P.: https://doi.org/10.1021/ja01203a010>
17. J. Chem. Soc. 1955, 4023.
J. E., Eaborn C.:
18a. Collect. Czech. Chem. Commun. 1965, 30, 1643.
< J., Mareš F.: https://doi.org/10.1135/cccc19651643>
18b. Collect. Czech. Chem. Commun. 1966, 31, 586.
< J., Mareš F.: https://doi.org/10.1135/cccc19660586>
19a. Collect. Czech. Chem. Commun. 1968, 33, 3131.
< B., Chvalovský V.: https://doi.org/10.1135/cccc19683131>
19b. Collect. Czech. Chem. Commun. 1968, 33, 3391.
< B., Chvalovský V.: https://doi.org/10.1135/cccc19683391>
20. J. Am. Chem. Soc. 1972, 94, 2500.
< K., Bacon R., Chellappa R. L., Schowen R. L., Lee J. K.: https://doi.org/10.1021/ja00762a051>
21. J. Organomet. Chem. 1974, 69, 185.
< C., Jenkins I. D.: https://doi.org/10.1016/S0022-328X(00)90236-5>
22. Main Group Met. Chem. 1989, 12, 129.
J., Lasocki Z.:
23. Acta Chim. Hung. 1974, 81, 223.
Z., Chruściel J., Graczyk T., Kulpiński J., Piechucki S.:
24. Pol. J. Chem. 1983, 57, 113; Chem. Abstr. 1984, 101, 7260.
J., Lasocki Z.:
25. Pol. J. Chem. 1983, 57, 121; Chem. Abstr. 1984, 101, 72791.
J., Lasocki Z.:
26. Pol. J. Chem. 1997, 71, 977; Chem. Abstr. 1997, 127, 135846.
J.:
27a. J. Am. Chem. Soc. 1952, 74, 6152.
< L., Wilzbach K. E.: https://doi.org/10.1021/ja01143a543>
27b. J. Am. Chem. Soc. 1951, 73, 4499.
< H., Dunn G. E., Hammond G. S.: https://doi.org/10.1021/ja01153a550>
27c. J. Am. Chem. Soc. 1955, 77, 1297.
< L., Wilzbach K. E.: https://doi.org/10.1021/ja01610a071>
27d. J. Am. Chem. Soc. 1956, 78, 4909.
< C., Dunn G. E., Gilman H., Hammond G. S.: https://doi.org/10.1021/ja01600a026>
28a. J. Am. Chem. Soc. 1951, 73, 3404.
< H., Dunn G. E.: https://doi.org/10.1021/ja01151a119>
28b. J. Chem. Soc. 1956, 1436.
< J. E., Eaborn C.: https://doi.org/10.1039/jr9560001436>
29. J. Organomet. Chem. 1985, 295, 265.
O. W., Lutkus A. G., Greenshields J. B.:
30. Zh. Obshch. Khim. 1970, 40, 2622.
I. E., Reikhsfeld V. O., Ivanov V. A.:
31. Coord. Chem. Rev. 1976, 18, 225.
< V.: https://doi.org/10.1016/S0010-8545(00)82045-7>
32. Bull. Chem. Soc. Jpn. 1987, 60, 531.
< S., Ozutsumi K., Ohtaki H.: https://doi.org/10.1246/bcsj.60.531>
33. Cotton F. A., Wilkinson G.: Advanced Inorganic Chemistry, 5th ed., p. 607. Wiley & Sons, Chichester, Brisbane, Toronto, Singapore 1988.
34. Kęcki Z., Kołos W., Libuś W., Minc S., Stolarczyk L.: Spektralne badania roztworów elektrolitów. PWN, Warsaw 1969.
35. Zh. Obshch. Khim. 1966, 36, 1069.
I. E., Reikhsfeld V. O.:
36. J. Organomet. Chem. 1978, 146, 1.
< B., Gulinska H.: https://doi.org/10.1016/S0022-328X(00)83745-6>
37a. Izv. Akad. Nauk SSSR 1973, 2574.
G. I., Voronkov M. G.:
37b. Izv. Akad. Nauk SSSR 1973, 2597.
M. G., Lebedeva G. I.:
37c. Zh. Obshch. Khim. 1973, 2597.
M. G., Lebedeva G. I.:
38. J. Organomet. Chem. 1983, 251, 295.
< B. J., West R., Corriu R. J. P., Poirier M., Royo G., Saxce A. D.: https://doi.org/10.1016/S0022-328X(00)98773-4>
39a. Organometallics 1988, 7, 237.
< R. J. P., Guerin C., Henner M., Wong Chi Man W. W. C.: https://doi.org/10.1021/om00091a038>
39b. J. Organomet. Chem. 1989, 359, C33.
< B., Corriu R. J. P., Guerin C., Henner M., Wang Q.: https://doi.org/10.1016/0022-328X(89)85437-3>
40. Organometallics 1991, 10, 2297.
< R. J. P., Guerin C., Henner M., Wang Q.: https://doi.org/10.1021/om00053a035>
41a. Organometallics 1991, 10, 3574.
< R. J. P., Guerin C., Henner M., Wang Q.: https://doi.org/10.1021/om00056a030>
41b. J. Organomet. Chem. 1989, 369, 147.
< B., Corriu R. J. P., Guerin C., Henner M.: https://doi.org/10.1016/0022-328X(89)88002-7>
41c. Chuit C., Corriu R. J. P., Reye C. in: Chemistry of Hypervalent Compounds (Kin-ya Akiba, Ed.). Wiley-VCH Inc., New York 1999.
42. J. Organomet. Chem. 1993, 446, C3.
< A. R., Jiang J.: https://doi.org/10.1016/0022-328X(93)80053-E>
43. J. Chem. Soc., Chem. Commun. 1984, 1387.
< A. R., Stout T.: https://doi.org/10.1039/c39840001387>
44. J. Organomet. Chem. 1996, 521, 65.
< M. J., Brook M. A., Penny H. B.: https://doi.org/10.1016/0022-328X(96)06299-7>
45. Chruściel J.: Can. J. Chem., in press.
46. Transition Met. Chem. (London) 1991, 16, 136; and references therein.
< U.: https://doi.org/10.1007/BF01127889>
47a. Main Group Chem. News 1996, 4(3), 6, and references therein.
J. Y., Braddock-Wilking J.:
47b. Chem. Rev. 1999, 99, 175.
< J. Y., Braddock-Wilking J.: https://doi.org/10.1021/cr9701086>
48a. J. Am. Chem. Soc. 1987, 110, 7776.
< J., Fortuniak W., Stańczyk W.: https://doi.org/10.1021/ja00259a028>
48b. Adv. Organomet. Chem. 1990, 30, 243.
< J., Stańczyk W.: https://doi.org/10.1016/S0065-3055(08)60503-1>
48c. Main Group Chem. News 1994, 2(1), 6.
J., Stańczyk W.: