Collect. Czech. Chem. Commun.
2004, 69, 397-413
https://doi.org/10.1135/cccc20040397
Reactivity of p-Substituted Benzaldoximes in the Cleavage of p-Nitrophenyl Acetate: Kinetics and Mechanism
Jan Píchaa,*, Radek Cibulkaa, František Hampla, František Liškaa, Patrik Paříkb and Oldřich Pytelab
a Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
b Department of Organic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic
References
1a. J. Chem. Soc., Perkin Trans. 2 1991, 153.
< F., MacCormack P., Kizilian E., Hallé J. C., Demerseman P., Guir F., Lion C.: https://doi.org/10.1039/p29910000153>
1b. J. Am. Chem. Soc. 1962, 84, 16.
< J. O., Pearson R. G.: https://doi.org/10.1021/ja00860a005>
1c. J. Med. Chem. 1981, 24, 1124.
< R. A., Howd R. A., Mosher C. W., Winterle J. S.: https://doi.org/10.1021/jm00142a003>
1d. J. Am. Chem. Soc. 2002, 124, 8766.
< E., Cannes C., Chratrousse A.-P., Terrier F.: https://doi.org/10.1021/ja020379k>
2a. J. Pharm. Sci. 1964, 53, 995.
< R. I., Wills J. H.: https://doi.org/10.1002/jps.2600530902>
2b. Biochem. Biophys. Res. Commun. 1965, 19, 531.
< R. M.: https://doi.org/10.1016/0006-291X(65)90158-0>
2c. J. Appl. Toxicol. 1994, 14, 317; and references therein.
< R. M.: https://doi.org/10.1002/jat.2550140502>
3a. J. Org. Chem. 1978, 43, 2816.
< J., Kaminski J. J., Bodor N., Enever R., Sowa J., Higuchi T.: https://doi.org/10.1021/jo00408a015>
3b. Monatsh. Chem. 1982, 113, 223.
< R., Rossmann K.: https://doi.org/10.1007/BF00799023>
3c. Bull. Soc. Chim. Belg. 1991, 100, 549.
< C., Despagne B., Delmas G., Fosset L.: https://doi.org/10.1002/bscb.19911000710>
3d. Collect. Czech. Chem. Commun. 1995, 60, 883.
< F., Mazáč J., Liška F., Šrogl J., Kábrt L., Suchánek M.: https://doi.org/10.1135/cccc19950883>
4a. Collect. Czech. Chem. Commun. 2000, 65, 227.
< R., Hampl F., Kotoučová H., Mazáč J., Liška F.: https://doi.org/10.1135/cccc20000227>
4b. J. Mol. Catal. 2001, 174, 59.
< H., Cibulka R., Hampl F., Liška F.: https://doi.org/10.1016/S1381-1169(01)00178-9>
5a. Feiters M. C.: Supramolecular Catalysis in Comprehensive Supramolecular Chemistry (D. N. Reinhoudt, Ed.), Vol. 10. Elsevier, Oxford 1996.
5b. Myers D.: Surfaces, Interfaces and Colloids: Principles and Applications. VCH Publishers, Weinheim 1991.
6a. Russ. J. Org. Chem. 2001, 37, 655.
< T. M., Simanenko Yu. S., Suprun I. P., Savelova V. A., Zubareva T. M., Karpichev E. A.: https://doi.org/10.1023/A:1012487415041>
6b. Tetrahedron 1978, 34, 523.
< G., Laloi-Diard M., Eisenstein O.: https://doi.org/10.1016/0040-4020(78)80046-5>
7a. J. Am. Chem. Soc. 1965, 87, 4195.
< R., Chipman D.: https://doi.org/10.1021/ja01096a039>
7b. Acc. Chem. Res. 1992, 25, 273.
< J.: https://doi.org/10.1021/ar00019a001>
7c. Acta Chem. Scand. 1989, 43, 407.
< M., Saarinen H., Korvenranta J.: https://doi.org/10.3891/acta.chem.scand.43-0407>
7d. Acta Chem. Scand. 1998, 52, 1209.
< H., Orama M.: https://doi.org/10.3891/acta.chem.scand.52-1209>
8a. Ridder A. M., Kellog R. M. in: Comprehensive Supramolecular Chemistry (Y. Murakami, Ed.), Vol. 4. Elsevier, Oxford 1996.
8b. J. Chem. Soc., Perkin Trans. 2 1992, 1295.
< A. K., Kazankov G. M., Ryabov A. D.: https://doi.org/10.1039/p29920001295>
8c. Langmuir 1999, 15, 405.
< F., Liska F., Mancin F., Tecilla P., Tonellato U.: https://doi.org/10.1021/la980861+>
8d. Collect. Czech. Chem. Commun. 1999, 64, 1159.
< R., Hampl F., Martinů T., Mazáč J., Totevová S., Liška F.: https://doi.org/10.1135/cccc19991159>
8e. Collect. Czech. Chem. Commun. 1997, 62, 1342.
< R., Dvořák D., Hampl F., Liška F.: https://doi.org/10.1135/cccc19971342>
9. Theor. Exp. Chem. 1998, 34, 76.
< S., Karpichev E. A., Prokopeva T. M., Savelova V. A., Popov A. F.: https://doi.org/10.1007/BF02764431>
10. J. Chem. Soc., Perkin Trans. 2 1974, 325.
< S., Cumper Ch. W. N.: https://doi.org/10.1039/p29740000325>
11. J. Org. Chem. 1992, 57, 6759.
< J. K., Reix T.: https://doi.org/10.1021/jo00051a017>
12. J. Org. Chem. 1960, 25, 546.
< R. H., Wakefield B. J.: https://doi.org/10.1021/jo01074a014>
13. Bull. Soc. Chim. Fr. 1991, 730.
C., Brahmi R., Carreyre H., Coustard J. M., Jacquersy J. C., Violeau B.:
14. J. Med. Chem. 1967, 10, 1192.
< C. F., Westby T. R.: https://doi.org/10.1021/jm00318a057>
15. Tetrahedron 2002, 58, 7715.
< M., Dunn P. J., Graham A. B., Grigg R., Higginson P., Saba I. S., Thornton-Pett M.: https://doi.org/10.1016/S0040-4020(02)00835-9>
16. J. Chem. Soc. 1961, 1908.
< N. B., Taylor H.: https://doi.org/10.1039/jr9610001908>
17. Chem. Ber. 1897, 30, 1896.
K. G., Kjellin C.:
18. J. Prakt. Chem. 1990, 332, 731.
< S., Czekanski T., Kaczmarek A.: https://doi.org/10.1002/prac.19903320523>
19. Chem. Ber. 1904, 37, 3043.
< E.: https://doi.org/10.1002/cber.19040370388>
20. J. Org. Chem. 1992, 57, 3019.
< F. G., Ji G. Z.: https://doi.org/10.1021/jo00037a014>
21. Chem. Ber. 1887, 20, 3193.
< O., Boessneck P.: https://doi.org/10.1002/cber.188702002215>
22. J. Org. Chem. 2000, 65, 8675.
< F., de la Cruz P., Espildora E., Gonzales-Cortes A., de la Hoz A., Lopez-Arza V.: https://doi.org/10.1021/jo0010532>
23. J. Chem. Soc., Perkin Trans. 1 1979, 643.
< M., Kikugawa Y.: https://doi.org/10.1039/p19790000643>
24. J. Med. Chem. 2001, 44, 2308.
< D., Roberti M., Invidiata F. P., Rondanin R., Baruchello R., Malagutti C., Mazzali A., Rossi M., Grimaudo S., Capone F., Dusonchet Z., Meli M., Raimondi M. V., Landino M., D’Alessandro N., Tolomeo M., Arindam D., Lu S., Benbrook D. M.: https://doi.org/10.1021/jm0010320>
25. J. Org. Chem. 1997, 62, 2466.
< L. H., Chung J. C., Costello T. D., Valvis I., Ma P., Kauffman S., Ward R.: https://doi.org/10.1021/jo9612537>
26. J. Org. Chem. 1977, 42, 2865.
< C. A., Yasuji I.: https://doi.org/10.1021/jo00437a018>
27. J. Chem. Soc., Perkin Trans. 2 1980, 1051.
< J., Exner O., Barbaro G., Macciantelli D., Dondoni A.: https://doi.org/10.1039/p29800001051>
28. Albert A., Serjeant E. P.: Ionization Constants of Acids and Basis. Butler and Tanner, London 1962.
29. OriginLab Corporation: Origin 6.1., Northampton 2000.
30. Exner O.: Correlation Analysis of Organic Reactivity. Wiley, New York 1982.
31. Collect. Czech. Chem. Commun. 1996, 61, 704.
< O.: https://doi.org/10.1135/cccc19960704>
32. http://www.upce.cz/~koch/en/science/Opgm.htm.
33. Exner O.: Korelační vztahy v organické chemii, pp. 70–95. SNTL/ALFA, Praha 1981.
34. Exner O.: Korelační vztahy v organické chemii, pp. 128–129. SNTL/ALFA, Praha 1981.
35. Palm V. A.: Osnovy kolichestvennoi teorii organicheskikh reaktsii. Khimiya, Leningrad 1977.
36. Aust. J. Chem. 1980, 33, 2441.
< L. W., Finlayson W. L.: https://doi.org/10.1071/CH9802441>
37. J. Org. Chem. 1990, 55, 1676.
< E. A., Ureta C.: https://doi.org/10.1021/jo00292a051>
38. J. Chem. Soc., Perkin Trans. 2 1996, 1353.
< H. J., Kim S. I., Lee B. C., Lee I.: https://doi.org/10.1039/p29960001353>
39. Can. J. Chem. 1998, 76, 729.
< I.-H., Chung E.-K., Lee S.-M.: https://doi.org/10.1139/cjc-76-6-729>
40. J. Org. Chem. 2002, 67, 8999.
< I.-H., Lee S.-E., Kwon H.-J.: https://doi.org/10.1021/jo0259360>
41. J. Org. Chem. 2003, 68, 3608.
< E. A., Andújar M., Toro A., Santos J. G.: https://doi.org/10.1021/jo034008d>
42. J. Am. Chem. Soc. 1996, 115, 1650.
< D., Cho S., Dhe-Paganon S., Jencks W. P.: https://doi.org/10.1021/ja00058a006>
43. Tetrahedron Lett. 2001, 42, 8051.
< I.-H., Han H.-J., Chung E.-K.: https://doi.org/10.1016/S0040-4039(01)01719-1>
44. J. Am. Chem. Soc. 1997, 119, 6980.
< R. A., Hengge A. C., Cleland W. W.: https://doi.org/10.1021/ja970648k>
45. Can. J. Chem. 1998, 76, 678.
< M. J., Kanagasooriam A. J. S. S., Wong M. S. O., Contini C., Williams A.: https://doi.org/10.1139/cjc-76-6-678>
46. Int. J. Chem. Kinet. 1973, 5, 1.
< N. J., Edwards J. O.: https://doi.org/10.1002/kin.550050102>
47. Tetrahedron Lett. 1995, 36, 6903.
< I.-H., Oh S.-J., Kwon D.-S.: https://doi.org/10.1016/0040-4039(95)01426-I>