Collect. Czech. Chem. Commun.
2004, 69, 715-747
https://doi.org/10.1135/cccc20040715
Mercury Electrodes in Nucleic Acid Electrochemistry: Sensitive Analytical Tools and Probes of DNA Structure. A Review
Miroslav Fojta
Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
References
1. Nature 1953, 171, 964.
< J. D., Crick F. H.: https://doi.org/10.1038/171964b0>
2. Nature 1953, 171, 737.
< J. D., Crick F. H.: https://doi.org/10.1038/171737a0>
3. Collect. Czech. Chem. Commun. 1933, 5, 112.
< R.: https://doi.org/10.1135/cccc19330112>
4. Collect. Czech. Chem. Commun. 1930, 2, 370.
< J., Babička J.: https://doi.org/10.1135/cccc19300370>
5. Biochem. Z. 1957, 329, 274.
H.:
6. Naturwissenschaften 1958, 45, 186.
< E.: https://doi.org/10.1007/BF00621332>
7. Nature 1960, 188, 656.
< E.: https://doi.org/10.1038/188656a0>
8. Biochim. Biophys. Acta 1961, 51, 1.
< E.: https://doi.org/10.1016/0006-3002(61)91010-1>
9. Berg H. in: Comprehensive Treatise of Electrochemistry of Biopolymers, Vol. 10. Electrochemistry of Biopolymers (S. Srinivasan, Y. Chizmaddzhev, J. Bockris, B. Convay and E. Yeager, Eds), p. 189. Plenum, New York 1985.
10. Brabec V., Vetterl V., Vrána O. in: Experimental Techniques in Bioelectrochemistry (V. Brabec, D. Walz and G. Milazzo, Eds), Vol. 3, p. 287. Birkhauser Verlag, Basel (Switzerland) 1996.
11. Paleček E. in: Progress in Nucleic Acid Research and Molecular Biology (J. N. Davidson and W. E. Cohn, Eds), Vol. 9, p. 31. Academic Press, New York 1969.
12. Paleček E. in: Progress in Nucleic Acid Research and Molecular Biology (W. E. Cohn, Ed.), Vol. 18, p. 151. Academic Press, Inc., New York 1976.
13. Paleček E. in: Topics in Bioelectrochemistry and Bioenergetics (G. Milazzo, Ed.), Vol. 5, p. 65. J. Wiley, Chichester 1983.
14. Paleček E. in: Encyclopedia of Analytical Science (A. Townshend, Ed.), Vol. 6, p. 3600. Academic Press, London 1995.
15. Electroanalysis (N. Y.) 1996, 8, 7.
< E.: https://doi.org/10.1002/elan.1140080103>
16. Paleček E., Fojta M., Jelen F., Vetterl V. in: The Encyclopedia of Electrochemistry (A. J. Bard and M. Stratsmann, Eds), Vol. 9, p. 365. Wiley-VCH, Weinheim 2002.
17. Talanta 2002, 56, 809.
< E.: https://doi.org/10.1016/S0039-9140(01)00649-X>
18. Biosens. Bioelectron. 1998, 13, 621.
< E., Fojta M., Tomschik M., Wang J.: https://doi.org/10.1016/S0956-5663(98)00017-7>
19. Nucleic Acids Res. 2000, 28, 3011.
< J.: https://doi.org/10.1093/nar/28.16.3011>
20. Interface 2002, 11, 30.
N., Thorp H.:
21. Anal. Chem. 2001, 73, 74A.
E., Fojta M.:
22. Electroanalysis (N. Y.) 2002, 14, 1449.
< M.: https://doi.org/10.1002/1521-4109(200211)14:21<1449::AID-ELAN1449>3.0.CO;2-Z>
23. Electroanalysis (N. Y.) 2002, 14, 965.
< A., Ozsoz M.: https://doi.org/10.1002/1521-4109(200208)14:14<965::AID-ELAN965>3.0.CO;2-U>
24. Bioelectrochem. Bioenerg. 1981, 8, 437.
< V.: https://doi.org/10.1016/0302-4598(81)80005-0>
25. J. Electroanal. Chem. Interfacial Electrochem. 1986, 214, 359.
< E., Postbieglová I.: https://doi.org/10.1016/0022-0728(86)80108-5>
26. Anal. Chim. Acta 1993, 273, 175.
< E., Jelen F., Teijeiro C., Fučík V., Jovin T. M.: https://doi.org/10.1016/0003-2670(93)80156-F>
27. Wang J.: Analytical Electrochemistry. VCH, New York 1994.
28. Heyrovský J., Kůta J.: Principles of Polarography. Publishing House of the Czech Acad. Sci., Prague 1965.
29. Novotný L. in: Electrochemistry for Environmental Protection (K. Stulik and R. Kalvoda, Eds), p. 49. UNESCO–ROSTE, Venice 1996.
30. Electroanalysis (N. Y.) 1996, 8, 135.
< L.: https://doi.org/10.1002/elan.1140080207>
31. Fresenius J. Anal. Chem. 1998, 362, 184.
< L.: https://doi.org/10.1007/s002160051056>
32. Electroanalysis (N. Y.) 2000, 12, 1233.
< L., Fojta M., Heyrovský M.: https://doi.org/10.1002/1521-4109(200010)12:15<1233::AID-ELAN1233>3.0.CO;2-J>
33. Methods Enzymol. 1971, 21, 3.
< E. in: https://doi.org/10.1016/S0076-6879(71)21003-X>
34. Blackburn M. G., Gait M. J.: Nucleic Acids in Chemistry and Biology. IRL Press, New York 1990.
35. Arch. Biochem. Biophys. 1962, 98, 527.
< E., Janík B.: https://doi.org/10.1016/0003-9861(62)90222-9>
36. Bioelectrochem. Bioenerg. 1980, 7, 644.
< L., Studničková M., Paleček E.: https://doi.org/10.1016/0302-4598(80)80030-4>
37. Gen. Physiol. Biophys. 1986, 5, 315.
E., Jelen F., Trnková L.:
38. J. Electroanal. Chem. 1997, 423, 141.
< F., Tomschik M., Paleček E.: https://doi.org/10.1016/S0022-0728(96)04954-6>
39. Anal. Chim. Acta 1986, 187, 99.
< E., Boublíková P., Jelen F.: https://doi.org/10.1016/S0003-2670(00)82902-5>
40. Biophys. Chem. 1986, 24, 285.
< F., Paleček E.: https://doi.org/10.1016/0301-4622(86)85033-5>
41. Bioelectrochem. Bioenerg. 1996, 401, 41.
< X., Rivas G., Farias P. A. M., Shirashi H., Wang J., Fojta M., Paleček E.: https://doi.org/10.1016/0302-4598(95)05048-5>
42. Electroanalysis (N. Y.) 2000, 12, 1422.
< T., Fojta M., Vidić J., Havran L., Paleček E.: https://doi.org/10.1002/1521-4109(200011)12:17<1422::AID-ELAN1422>3.0.CO;2-C>
43. J. Mol. Biol. 1961, 3, 229.
< I. R.: https://doi.org/10.1016/S0022-2836(61)80063-6>
44. J. Mol. Biol. 1961, 3, 357.
< I. R.: https://doi.org/10.1016/S0022-2836(61)80073-9>
45. Biopolymers 1972, 11, 2577.
< V., Paleček E.: https://doi.org/10.1002/bip.1972.360111215>
46. Biophys. Chem. 1980, 11, 1.
< V.: https://doi.org/10.1016/0301-4622(80)85001-0>
47. Biophys. Struct. Mech. 1974, 1, 17.
< P., Nurnberg H. W.: https://doi.org/10.1007/BF01022557>
48. J. Electroanal. Chem. Interfacial Electrochem. 1977, 75, 455.
< B., Sequaris J. M., Valenta P., Nurnberg H. W.: https://doi.org/10.1016/S0022-0728(77)80190-3>
49. Electroanalysis (N. Y.) 2000, 12, 926.
< M., Havran L., Fulnečková J., Kubičarová T.: https://doi.org/10.1002/1521-4109(200008)12:12<926::AID-ELAN926>3.0.CO;2-F>
50. Biochemistry 1998, 37, 4853.
< M., Bowater R. P., Staňková V., Havran L., Lilley D. M. J., Paleček E.: https://doi.org/10.1021/bi9729559>
51. Bioelectrochem. Bioenerg. 1994, 34, 69.
< M., Teijeiro C., Paleček E.: https://doi.org/10.1016/0302-4598(94)80011-1>
52. Electroanalysis (N. Y.) 1996, 8, 420.
< M., Doffková R., Paleček E.: https://doi.org/10.1002/elan.1140080504>
53. Anal. Chem. 1994, 66, 1566.
< E., Fojta M.: https://doi.org/10.1021/ac00081a033>
54. Curr. Opin. Mol. Ther. 2000, 2, 282.
P. E.:
55. Biophys. J. 1997, 72, 2285.
< M., Vetterl V., Tomschik M., Jelen F., Nielsen P., Wang J., Paleček E.: https://doi.org/10.1016/S0006-3495(97)78873-8>
56. J. Electroanal. Chem. 1999, 476, 71.
< M., Jelen F., Havran L., Trnková L., Nielsen P. E., Paleček E.: https://doi.org/10.1016/S0022-0728(99)00369-1>
57. Arch. Biochem. Biophys. 1966, 115, 431.
< E., Frary B. D.: https://doi.org/10.1016/0003-9861(66)90060-9>
58. Biochim. Biophys. Acta 1967, 145, 410.
< E.: https://doi.org/10.1016/0005-2787(67)90059-7>
59. Biopolymers 1968, 6, 917.
< E., Vetterl V.: https://doi.org/10.1002/bip.1968.360060703>
60. Int. J. Radiat. Biol. 1974, 26, 363.
< M., Paleček E.: https://doi.org/10.1080/09553007414551341>
61. Bioelectrochem. Bioenerg. 1980, 7, 671.
< E., Vojtíšková M., Paleček E.: https://doi.org/10.1016/0302-4598(80)80032-8>
62. Radiat. Environ. Biophys. 1980, 18, 65.
< R., Walter Z., Wiaderkiewicz R., Lukášová E., Paleček E.: https://doi.org/10.1007/BF01324375>
63. Paleček E. in: Proc. Electroanal. Hyg. Environ., Clin. Pharm. Chem., (W. F. Smyth, Ed.), p. 79. Elsevier, Amsterdam 1980..
64. Bioelectrochem. Bioenerg. 1981, 8, 487.
< M., Lukášová E., Jelen F., Paleček E.: https://doi.org/10.1016/0302-4598(81)80020-7>
65. Anal. Biochem. 1974, 60, 518.
< E., Doskočil J.: https://doi.org/10.1016/0003-2697(74)90262-0>
66. Studia Biophys. 1976, 60, 105.
V., Paleček E.:
67. Experientia 1965, 21, 9.
< V.: https://doi.org/10.1007/BF02136352>
68. J. Electroanal. Chem. Interfacial Electrochem. 1968, 19, 169.
< V.: https://doi.org/10.1016/S0022-0728(68)80200-1>
69. Biophysik 1968, 5, 255.
< V.: https://doi.org/10.1007/BF01189038>
70. Abh. Dtsch. Akad. Wiss., Berlin 1964, 4, 270.
E.:
71. Anal. Lett. 1987, 20, 275.
< P., Vojtíšková M., Paleček E.: https://doi.org/10.1080/00032718708064565>
72. Anal. Chim. Acta 1997, 349, 77.
< J., Grant D. H., Ozsoz M., Cai X. H., Tian B. M., Fernandes J. R.: https://doi.org/10.1016/S0003-2670(97)00211-0>
73. Electroanalysis (N. Y.) 1997, 9, 1033.
< M., Havran L., Paleček E.: https://doi.org/10.1002/elan.1140091312>
74. Electroanalysis (N. Y.) 1997, 9, 990.
< E., Tomschik M., Staňková V., Havran L.: https://doi.org/10.1002/elan.1140091305>
75. Electroanalysis (N. Y.) 2000, 12, 1390.
< T., Fojta M., Vidić J., Suznjević D., Tomschik M., Paleček E.: https://doi.org/10.1002/1521-4109(200011)12:17<1390::AID-ELAN1390>3.0.CO;2-G>
76. Anal. Chem. 1999, 71, 1910.
< J., Bollo S., Paz J. L. L., Sahlin E., Mukherjee B.: https://doi.org/10.1021/ac981432j>
77. Anal. Chem. 1995, 67, 4065.
< J., Cai X., Wang J., Jonsson C., Paleček E.: https://doi.org/10.1021/ac00118a006>
78. Talanta 1998, 46, 155.
< M., Staňková V., Paleček E., Mitáš J., Koscielniak P.: https://doi.org/10.1016/S0039-9140(97)00281-6>
79. Anal. Biochem. 1986, 156, 454.
< D., Ćosović B.: https://doi.org/10.1016/0003-2697(86)90279-4>
80. Chem.-Biol. Interact. 1990, 76, 111.
< D., Ćosović B., Stuber J., Zahn R. K.: https://doi.org/10.1016/0009-2797(90)90038-O>
81. Electroanalysis (N. Y.) 1999, 12, 987.
< F., Vetterl V., Běluša P., Hasoň S.: https://doi.org/10.1002/1521-4109(200008)12:12<987::AID-ELAN987>3.0.CO;2-O>
82. Electrochim. Acta 2000, 45, 2961.
< V., Papadopoulos N., Dražan V., Strašák L., Hasoň S., Dvořák J.: https://doi.org/10.1016/S0013-4686(00)00375-3>
83. Talanta 2002, 56, 905.
< S., Dvořák J., Jelen F., Vetterl V.: https://doi.org/10.1016/S0039-9140(01)00664-6>
84. Bioelectrochemistry 2002, 56, 37.
< L., Dvořák J., Hason S., Vetterl V.: https://doi.org/10.1016/S1567-5394(02)00019-1>
85. Chem. Listy 2001, 95, 518.
L.:
86. J. Electroanal. Chem. 1996, 402, 19.
< O.: https://doi.org/10.1016/0022-0728(95)04257-1>
87. Bioelectrochemistry 2001, 54, 131.
< L., Friml J., Dračka O.: https://doi.org/10.1016/S1567-5394(01)00119-0>
88. Electroanalysis (N. Y.) 2000, 12, 905.
< L., Kizek R., Dračka O.: https://doi.org/10.1002/1521-4109(200008)12:12<905::AID-ELAN905>3.0.CO;2-R>
89. Bioelectrochem. Bioenerg. 1981, 8, 621.
< E., Jelen F., Hung M. A., Lasovský J.: https://doi.org/10.1016/0302-4598(81)87005-5>
90. Collect. Czech. Chem. Commun. 1960, 25, 2283.
< E.: https://doi.org/10.1135/cccc19602283>
91. Anal. Lett., Part B 1980, 13, 331.
< E.: https://doi.org/10.1080/00032718008059787>
92. Analyst 1987, 112, 243.
< A. J. M., Gutierrez M. J. G., Garcia A. C., Blanco P. T.: https://doi.org/10.1039/an9871200243>
93. Anal. Chem. 2002, 74, 4788.
< F., Yosypchuk B., Kouřilová A., Novotný L., Paleček E.: https://doi.org/10.1021/ac0200771>
94. Talanta 2001, 55, 281.
< P. A. M., Wagener A. D., Castro A. A.: https://doi.org/10.1016/S0039-9140(01)00422-2>
95. Bioelectrochemistry 2002, 56, 85.
< E., Fojta M., Jelen F.: https://doi.org/10.1016/S1567-5394(02)00025-7>
96. Talanta 2002, 56, 919.
< E., Billová S., Havran L., Kizek R., Mičulková A., Jelen F.: https://doi.org/10.1016/S0039-9140(01)00666-X>
97. Electroanalysis (N. Y.) 2002, 14, 1488.
< B., Heyrovský M., Paleček E., Novotný L.: https://doi.org/10.1002/1521-4109(200211)14:21<1488::AID-ELAN1488>3.0.CO;2-X>
98. Fadrna R., Yosypchuk B., Fojta M., Navrátil T., Novotný L.: Anal. Lett. 2004, in press.
99. Abh. Dtsch. Akad. Wiss., Berlin 1966, 4, 493.
V.:
100. Biolectrochem. Bioenerg. 1976, 3, 418.
< P., Nurnberg H. W., Krźnarić D.: https://doi.org/10.1016/0302-4598(76)80035-9>
101. J. Electroanal. Chem. Interfacial Electrochem. 1975, 65, 863.
< D., Valenta P., Nurnberg H. W.: https://doi.org/10.1016/S0022-0728(75)80169-0>
102. Bioelectrochem. Bioenerg. 1977, 4, 435.
< V., Kováriková E., Žaludová R.: https://doi.org/10.1016/0302-4598(77)80040-8>
103. Bioelectrochem. Bioenerg. 1980, 7, 517.
< V., Pokorný J.: https://doi.org/10.1016/0302-4598(80)80011-0>
104. J. Electroanal. Chem. Interfacial Electrochem. 1977, 85, 389.
< V., Christian S. D., Dryhurst G.: https://doi.org/10.1016/S0022-0728(77)80306-9>
105. Bioelectrochem. Bioenerg. 1986, 16, 497.
< Y. M., Kamal M. M., Ahmed M. E., Ahmed Z. A.: https://doi.org/10.1016/0302-4598(86)80071-X>
106. J. Electroanal. Chem. Interfacial Electrochem. 1989, 274, 1.
< U., Vetterl V., Jursa J.: https://doi.org/10.1016/0022-0728(89)87026-3>
107. Bioelectrochemistry 2002, 57, 23.
< S., Vetterl V.: https://doi.org/10.1016/S1567-5394(01)00179-7>
108. Bioelectrochemistry 2002, 56, 43.
< S., Vetterl V.: https://doi.org/10.1016/S1567-5394(02)00053-1>
109. Anal. Biochem. 1988, 170, 421.
< E.: https://doi.org/10.1016/0003-2697(88)90654-9>
110. Anal. Chim. Acta 1997, 342, 1.
< M., Paleček E.: https://doi.org/10.1016/S0003-2670(96)00551-X>
111. Talanta 2002, 56, 867.
< M., Havran L., Kizek R., Billová S.: https://doi.org/10.1016/S0039-9140(01)00660-9>
112. Bioelectrochemistry 2002, 55, 119.
< R., Havran L., Fojta M., Paleček E.: https://doi.org/10.1016/S1567-5394(01)00139-6>
113. J. Electroanal. Chem. 1997, 427, 49.
< F., Fojta M., Paleček E.: https://doi.org/10.1016/S0022-0728(96)05030-9>
114. Biosens. Bioelectron. 2000, 15, 107.
< M., Kubičárová T., Paleček E.: https://doi.org/10.1016/S0956-5663(00)00070-1>
115. Bioelectrochemistry 2002, 55, 25.
< M., Havran L., Kubičárová T., Paleček E.: https://doi.org/10.1016/S1567-5394(01)00131-1>
116. Kuchaříková K., Novotný L., Yosypchuk B., Fojta M.: Electroanalysis (N. Y.) 2004, in press.
117. Electroanalysis (N. Y.) 1999, 11, 1005.
< M., Kubičárová T., Paleček E.: https://doi.org/10.1002/(SICI)1521-4109(199910)11:14<::AID-ELAN1005>3.0.CO;2-3>
118. Bioelectrochem. Bioenerg. 1992, 28, 71.
< E.: https://doi.org/10.1016/0302-4598(92)80004-Z>
119. Gen. Physiol. Biophys. 1985, 4, 219.
F., Paleček E.:
120. Strahlentherapie 1983, 159, 505.
J., Forss M.:
121. Biophys. Chem. 1990, 35, 129.
< V., Kleinwachter V., Butour J. L., Johnson N. P.: https://doi.org/10.1016/0301-4622(90)80003-P>
122. Gen. Physiol. Biophys. 1984, 3, 175.
E., Vojtíšková M., Jelen F., Sticzay T., Paleček E.:
123. J. Biol. Inorg. Chem. 2002, 7, 725.
< V., Kašpárková J., Nováková O., Monsu Scolaro L., Romeo R., Brabec V.: https://doi.org/10.1007/s00775-002-0347-1>
124. Bioelectrochem. Bioenerg. 1974, 1, 459.
< J., Berg H.: https://doi.org/10.1016/0302-4598(74)80019-X>
125. Nurnberg H. W., Valenta P. in: Ions in Macromolecular and Biological Systems (D. H. Everett and B. Vincent, Eds), p. 201. Scientechnica, Bristol 1977.
126. Biophys. Chem. 1987, 28, 191.
< D., Vrána O., Kleinwachter V., Brabec V.: https://doi.org/10.1016/0301-4622(87)80089-3>
127. Bates A. D., Maxwell A.: DNA Topology. IRL Press, Oxford 1993.
128. J. Mol. Biol. 1968, 33, 173.
< J., Lebowitz J., Watson R.: https://doi.org/10.1016/0022-2836(68)90287-8>
129. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 151.
< E.: https://doi.org/10.3109/10409239109081126>
130. Bioelectrochem. Bioenerg. 1988, 20, 179.
< E.: https://doi.org/10.1016/S0302-4598(98)80015-9>
131. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 475.
< G.: https://doi.org/10.3109/10409239109086791>
132. Wallace S. S., van Houten B., Kow Y. W. (Eds): DNA Damage. Effects on DNA Structure and Protein Recognition. The New York Academy of Sciences, New York 1994.
133. Angew. Chem., Int. Ed. 2003, 42, 2946.
< O. D.: https://doi.org/10.1002/anie.200200523>
134. Nature 2003, 421, 436.
< E. C.: https://doi.org/10.1038/nature01408>
135. Free Radical Res. 1998, 29, 541.
< J., D’Ham C., Douki T., Pouget J. P., Ravanat J. L., Sauvaigo S.: https://doi.org/10.1080/10715769800300581>
136. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 288.
< H. J., Beckman K. B., Shigenaga M. K., Walter P. B., Woodall A. A., Yeo H. C., Ames B. N.: https://doi.org/10.1073/pnas.95.1.288>
137. Int. J. Radiat. Biol. 1982, 42, 407.
< J. M., Valenta P., Nurnberg H. W.: https://doi.org/10.1080/09553008214551331>
138. J. Biomol. Struct. Dyn. 1993, 11, 313.
< C., Nejedlý K., Paleček E.: https://doi.org/10.1080/07391102.1993.10508729>
139. Electrochim. Acta 2000, 45, 2929.
< V.: https://doi.org/10.1016/S0013-4686(00)00370-4>
140. Anal. Chem. 1997, 69, 1457.
< J., Rivas G., Ozsos M., Grant D. H., Cai X., Parrado C.: https://doi.org/10.1021/ac961000d>
141. Anal. Chem. 1996, 68, 2251.
< J., Chicharro M., Rivas G., Cai X. H., Dontha N., Farias P. A. M., Shiraishi H.: https://doi.org/10.1021/ac9600619>
142. Bioelectrochem. Bioenerg. 1986, 15, 275.
< E.: https://doi.org/10.1016/0302-4598(86)80033-2>
143. Electroanalysis (N. Y.) 2000, 12, 969.
< A. M. O., Piedade J. A. P., Serrano S. H. P.: https://doi.org/10.1002/1521-4109(200008)12:12<969::AID-ELAN969>3.0.CO;2-O>
144. Chem. Biol. 1999, 6, 599.
< P. A., Thorp H. H.: https://doi.org/10.1016/S1074-5521(99)80111-2>
145. Burešová R.: Ph.D. Thesis. Masaryk University, Brno 1997.
146. Biophys. Chem. 1998, 75, 87.
< D., Perez P., Teijeiro C., Paleček E.: https://doi.org/10.1016/S0301-4622(98)00190-2>
147. Chem.-Biol. Interact. 1999, 117, 65.
< P., Teijeiro C., Marin D.: https://doi.org/10.1016/S0009-2797(98)00098-2>
148. Bioelectrochem. Bioenerg. 1995, 38, 77.
< C., Perez P., Marin D., Paleček E.: https://doi.org/10.1016/0302-4598(95)01791-C>
149. Gen. Physiol. Biophys. 1991, 10, 461.
F., Karlovský P., Pečinka P., Makaturová E., Paleček E.:
150. Anal. Biochem. 1983, 132, 236.
< E., Hung M. A.: https://doi.org/10.1016/0003-2697(83)90002-7>
151. Gen. Physiol. Biophys. 1982, 1, 53.
E., Jelen F., Paleček E.:
152. Methods Enzymol. 1992, 212, 139.
< E.: https://doi.org/10.1016/0076-6879(92)12010-N>
153. Electroanalysis (N. Y.) 2003, 15, 431.
< M., Havran L., Billová S., Kostečka P., Masařík M., Kizek R.: https://doi.org/10.1002/elan.200390050>
154. Fojta M., Havran L., Kizek R., Billová S., Paleček E.: Biosens. Bioelectron. 2004, in press.
155. Fojta M., Havran L., Vojtíšková M., Paleček E.: J. Am. Chem. Soc. 2004, submitted.
156. Anal. Chim. Acta 2002, 469, 73.
< E., Kizek R., Havran L., Billová S., Fojta M.: https://doi.org/10.1016/S0003-2670(01)01605-1>
157. Cahová K., Fojta M., Mozga T., Paleček E.: Unpublished results.
158. Bioelectrochem. Bioenerg. 1991, 26, 15.
< J.-M., Swiatek J.: https://doi.org/10.1016/0302-4598(91)87030-K>
159. Electroanalysis (N. Y.) 1990, 2, 35.
< J.-M., Esteban M.: https://doi.org/10.1002/elan.1140020108>
160. J. Electroanal. Chem. 1999, 466, 2.
< R. F., Lewis D. M., Chambers J. Q.: https://doi.org/10.1016/S0022-0728(99)00096-0>
161. J. Electroanal. Chem. 1998, 457, 53.
< J. L. M., Calzon J. A. G., Fonseca J. M. L.: https://doi.org/10.1016/S0022-0728(98)00124-7>
162. Bioelectrochem. Bioenerg. 1996, 39, 55.
< M. M., Lopes C. M. L. F., Simoes-Goncalves M. L.: https://doi.org/10.1016/0302-4598(95)01857-3>
163. Bioelectrochem. Bioenerg. 1998, 45, 267.
< M. M., Sousa P. M. P., Modesto A. M. M., Simoes Goncalves M. L.: https://doi.org/10.1016/S0302-4598(97)00102-5>
164. Electroanalysis (N. Y.) 1997, 9, 1348.
< F., Li N.-Q.: https://doi.org/10.1002/elan.1140091709>
165. Int. J. Environ. Anal. Chem. 2003, 83, 693.
< I. C., Girousi S. T., Pantazaki A. A., Voulgaropoulos A. N., Tzimou-Tsitouridou R.: https://doi.org/10.1080/0306731021000008586>
166. J. Pharm. Biomed. Anal. 2003, 31, 1065.
< I. C., Girousi S. T., Voulgaropoulos A. N., Tzimou-Tsitouridou R.: https://doi.org/10.1016/S0731-7085(02)00645-3>
167. Bioelectrochemistry 2002, 55, 165.
< F., Erdem A., Paleček E.: https://doi.org/10.1016/S1567-5394(01)00143-8>
168. Marmur J., Rownd R., Schildkraut C. L. in: Progress in Nucleic Acid Research (J. N. Davidson and W. E. Cohn, Eds), Vol. 1, p. 231. Academic Press, London 1963.
169. Annu. Rev. Biomed. Eng. 2002, 4, 129.
< M. J.: https://doi.org/10.1146/annurev.bioeng.4.020702.153438>
170. Tibtech 1998, 16, 117.
< H. H.: https://doi.org/10.1016/S0167-7799(97)01162-1>
171. Nat. Biotechnol. 2000, 18, 1096.
< E. M., Ceres D. M., Drummond T. G., Hill M. G., Barton J. K.: https://doi.org/10.1038/80301>
172. Nucleic Acids Res. 1996, 24, 4273.
< T., Maruo Y., Takanaka S., Takagi M.: https://doi.org/10.1093/nar/24.21.4273>
173. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9134.
< C., Plaxco K. W., Heeger A. J.: https://doi.org/10.1073/pnas.1633515100>
174. J. Am. Chem. Soc. 1999, 121, 769.
< D. J., Heller A.: https://doi.org/10.1021/ja983328p>
175. Bull. Chem. Soc. Jpn. 1999, 72, 327.
< S., Takagi M.: https://doi.org/10.1246/bcsj.72.327>
176. J. Am. Chem. Soc. 1996, 118, 7667.
< J., Paleček E., Nielsen P. E., Rivas G., Cai X. H., Shiraishi H., Dontha N., Luo D., Farias P. A. M.: https://doi.org/10.1021/ja9608050>
177. Anal. Chim. Acta 1997, 344, 65.
< X., Rivas G., Shiraishi H., Farias P., Wang J., Tomschik M., Jelen F., Paleček E.: https://doi.org/10.1016/S0003-2670(97)00007-X>
178. Anal. Chem. 2002, 74, 5931.
< D., Erdem A., Kara P., Kerman K., Meric B., Hassmann J., Ozsoz M.: https://doi.org/10.1021/ac0257905>
179. Talanta 2002, 56, 931.
< J., Xu D., Erdem A., Polsky R., Salazar M. A.: https://doi.org/10.1016/S0039-9140(01)00653-1>
180. Langmuir 2002, 19, 989.
< J., Polsky R., Merkoci A., Turner K.: https://doi.org/10.1021/la026697e>
181. Analyst 2002, 127, 1279.
< J., Kawde A. N., Musameh M., Rivas G.: https://doi.org/10.1039/b207424a>
182. J. Am. Chem. Soc. 2002, 124, 4208.
< J., Xu D., Polsky R.: https://doi.org/10.1021/ja0255709>
183. Anal. Chem. 1999, 71, 4851.
< Z. H., Mangru S., Granzow R., Heaney P., Ho W., Dong Q., Kumar R.: https://doi.org/10.1021/ac9902190>
184. Bioelectrochem. Bioenerg. 1997, 44, 151.
< J., Huang Y., Zhou J., Luo J., Lin Z.: https://doi.org/10.1016/S0302-4598(97)00049-4>
185. Kostečka P., Havran L., Pivoňková H., Fojta M.: Bioelectrochemistry 2004, in press.
186. Russ. J. Phys. Chem. 2003, 77, 797.
S. S., Ulakhovich N. A., Zyavkina Y. I., Moiseeva E. N.:
187. J. Anal. Chem. 1999, 54, 1070.
S. S., Ulakhovich N. A., Medyantseva E. P., Zyavkina Y. I.:
188. J. Anal. Chem. 1998, 53, 532.
S. S., Ulakhovich N. A., Medyantseva E. P., Klimovich O. V.: