Collect. Czech. Chem. Commun. 2004, 69, 776-796
https://doi.org/10.1135/cccc20040776

Intramolecular Triplet-Triplet Energy Transfer in Short Flexible Bichromophoric Amino Acids, Dipeptides and Carboxylic Acid Diester

Miroslav Zabadala, Dominik Hegera, Petr Klána,* and Zdeněk Křížb

a Department of Organic Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
b National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic

References

1. Dexter D. L.: J. Chem. Phys. 1953, 21, 836. <https://doi.org/10.1063/1.1699044>
2a. Turro N. J.: Pure Appl. Chem. 1977, 49, 405. <https://doi.org/10.1351/pac197749040405>
2b. Winnik M. A.: Chem. Rev. 1981, 81, 491. <https://doi.org/10.1021/cr00045a004>
3. Turro N. J.: Modern Molecular Photochemistry. Benjamin, Menlo Park (CA) 1978.
4a. Cowan D. O., Baum A. A.: J. Am. Chem. Soc. 1971, 93, 1153. <https://doi.org/10.1021/ja00734a021>
4b. Katayama H., Maruyama S., Ito S., Tsujii Y., Tsuchida A., Yamamoto M.: J. Phys. Chem. 1991, 95, 3480. <https://doi.org/10.1021/j100162a009>
4c. Lathioor E. C., Leigh W. J., St. Pierre M. J.: J. Am. Chem. Soc. 1999, 121, 11984, and references therein. <https://doi.org/10.1021/ja991207z>
4d. Ito Y., Kawatsuki N., Giri B. P., Yoshida M., Matsuura T.: J. Org. Chem. 1985, 50, 2893. <https://doi.org/10.1021/jo00216a018>
4e. Wagner P. J., El-Taliawi G. M.: J. Am. Chem. Soc. 1992, 114, 8325. <https://doi.org/10.1021/ja00047a074>
5. Klán P., Wagner P. J.: J. Am. Chem. Soc. 1998, 120, 2198. <https://doi.org/10.1021/ja974016+>
6. Wagner P. J., Klán P.: J. Am. Chem. Soc. 1999, 121, 9626. <https://doi.org/10.1021/ja990224l>
7. Vrbka L., Klán P., Kříž Z., Koča J., Wagner P. J.: J. Phys. Chem. A 2003, 107, 3404. <https://doi.org/10.1021/jp026890h>
8. McGimpsey W. G., Chen L., Carraway R., Samaniego W. N.: J. Phys. Chem. A 1999, 103, 6082. <https://doi.org/10.1021/jp9901592>
9. Bieri O., Wirz J., Hellrung B., Schutkowski M., Drewello M., Kiefhaber T.: Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9597. <https://doi.org/10.1073/pnas.96.17.9597>
10a. Lapidus L. J., Eaton W. A., Hofrichter J.: Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7220. <https://doi.org/10.1073/pnas.97.13.7220>
10b. Lapidus L. J., Eaton W. A., Hofrichter J.: J. Mol. Biol. 2002, 319, 19. <https://doi.org/10.1016/S0022-2836(02)00193-6>
10c. Lapidus L. J., Steinbach P. J., Eaton W. A., Szabo A., Hofrichter J.: J. Phys. Chem. B 2002, 106, 11628. <https://doi.org/10.1021/jp020829v>
11. Anderson R. W., Hochstrasser R. M., Lutz H., Scott G. W.: J. Chem. Phys. 1974, 61, 2500. <https://doi.org/10.1063/1.1682369>
12. Wagner P. J.: Acc. Chem. Res. 1983, 16, 461. <https://doi.org/10.1021/ar00096a006>
13. Rather J. B., Reid E. E.: J. Am. Chem. Soc. 1919, 41, 75. <https://doi.org/10.1021/ja01458a009>
14. Newman M. S., Cella J. A.: J. Org. Chem. 1974, 39, 214. <https://doi.org/10.1021/jo00916a020>
15. Banerjee A., Falvey D. E.: J. Org. Chem. 1997, 62, 6245. <https://doi.org/10.1021/jo970495j>
16. Narita M., Ogura T., Sato K., Honda S.: Bull. Chem. Soc. Jpn. 1986, 59, 2433. <https://doi.org/10.1246/bcsj.59.2433>
17. Ringshaw D. J., Smith H. J.: J. Chem. Soc. 1964, 1560.
18. Harada N., Ozaki K.: Heterocycles 1997, 46, 241.
19. Zabadal M., Wirz J., Klán P.: Unpublished results.
20. Koča J., Ludin M., Perez S., Imberty A.: J. Mol. Graph. Model. 2000, 18, 108. <https://doi.org/10.1016/S1093-3263(00)00042-5>
21a. Allinger N. L., Yuh Y. U., Lii J.-H.: J. Am. Chem. Soc. 1989, 111, 8551. <https://doi.org/10.1021/ja00205a001>
21b. Allinger N. L., Li F., Yan L.: J. Comput. Chem. 1990, 11, 848. <https://doi.org/10.1002/jcc.540110708>
21c. Allinger N. L., Li F., Yan L., Tai J. C.: J. Comput. Chem. 1990, 11, 868. <https://doi.org/10.1002/jcc.540110709>
21d. Lii J.-H., Allinger N. L.: J. Am. Chem. Soc. 1989, 111, 8566. <https://doi.org/10.1021/ja00205a002>
21e. Lii J.-H., Allinger N. L.: J. Am. Chem. Soc. 1989, 111, 8576. <https://doi.org/10.1021/ja00205a003>
21f. Lii J.-H., Allinger N. L.: J. Phys. Org. Chem. 1994, 7, 591. <https://doi.org/10.1002/poc.610071103>
21g. Lii J.-H., Allinger N. L.: J. Comput. Chem. 1998, 19, 1001. <https://doi.org/10.1002/(SICI)1096-987X(19980715)19:9<1001::AID-JCC2>3.0.CO;2-U>
22. Koča J.: Prog. Biophys. Mol. Biol. 1998, 70, 137. <https://doi.org/10.1016/S0079-6107(98)00029-7>
23. Kříž Z.: SCALP, Statit Conformational Analysis Program. 1998 (unpublished).
24. Ponder J. W.: TINKER – Software Tools for Molecular Design. Washington University School of Medicine, St. Louis 1998.
25a. Laaksonen L.: J. Mol. Graphics 1992, 10, 33. <https://doi.org/10.1016/0263-7855(92)80007-Z>
25b. Bergman D. L., Laaksonen L., Laaksonen A.: J. Mol. Graph. Model. 1997, 15, 301. <https://doi.org/10.1016/S1093-3263(98)00003-5>
26a. Hammond G. S., Moore W. M.: J. Am. Chem. Soc. 1959, 81, 6334. <https://doi.org/10.1021/ja01532a060>
26b. Moore W. M., Hammond G. S., Foss R. P.: J. Chem. Phys. 1960, 32, 1594. <https://doi.org/10.1063/1.1730987>
26c. Hammond G. S., Leermakers P. A.: J. Am. Chem. Soc. 1962, 84, 207. <https://doi.org/10.1021/ja00861a017>
27. Lamola A. A., Hammond G. S.: J. Chem. Phys. 1965, 43, 2129. <https://doi.org/10.1063/1.1697084>
28. Bhattacharyya K., Das P. K.: J. Phys. Chem. 1986, 90, 3987. <https://doi.org/10.1021/j100408a032>
29. Shizuka H., Yamaji M.: Bull. Chem. Soc. Jpn. 2000, 73, 267. <https://doi.org/10.1246/bcsj.73.267>
30. Cohen S. G., Stein N. M.: J. Am. Chem. Soc. 1971, 93, 6542. <https://doi.org/10.1021/ja00753a036>
31a. Mizushima S., Shimanouchi T., Tsuboi M., Souda R.: J. Am. Chem. Soc. 1952, 74, 270. <https://doi.org/10.1021/ja01121a520>
31b. Yang D., Li B., Ng F.-F., Yan Y.-L., Qu J., Wu Y.-D.: J. Org. Chem. 2001, 66, 7303, and references therein. <https://doi.org/10.1021/jo010376a>
32. Zabadal M., Heger D., Nečas M., Klán P.: Acta Crystalogr., Sect. C: Cryst. Struct. Commun. 2003, 59, 77. <https://doi.org/10.1107/S0108270103000155>
33a. Wagner P. J., Scheve B. J.: J. Am. Chem. Soc. 1979, 101, 378. <https://doi.org/10.1021/ja00496a017>
33b. Wagner P. J., El-Taliawi G. M.: J. Am. Chem. Soc. 1992, 114, 8325. <https://doi.org/10.1021/ja00047a074>
33c. Wagner P. J., Giri B. P., Frerking H. W., Jr., DeFrancesco J.: J. Am. Chem. Soc. 1992, 114, 8326. <https://doi.org/10.1021/ja00047a075>
34a. Banerjee A., Lee K., Falvey D. E.: Tetrahedron 1999, 55, 12699. <https://doi.org/10.1016/S0040-4020(99)00754-1>
34b. Banerjee A., Lee K., Yu Q., Fang A. G., Falvey D. E.: Tetrahedron Lett. 1998, 39, 4635. <https://doi.org/10.1016/S0040-4039(98)00857-0>
35. Loutfy R. O., Loutfy R. O.: Can. J. Chem. 1972, 50, 4052. <https://doi.org/10.1139/v72-639>
36. Berger M., Camp R. N., Demetrescu I., Giering L., Steel C.: Isr. J. Chem. 1977, 16, 311. <https://doi.org/10.1002/ijch.197700051>
37a. Closs G. L., Piotrowiak P., Macinnis J. M., Fleming G. R.: J. Am. Chem. Soc. 1988, 110, 2652. <https://doi.org/10.1021/ja00216a051>
37b. Closs G. L., Johnson M. D., Miller J. R., Piotrowiak P.: J. Am. Chem. Soc. 1989, 111, 3751. <https://doi.org/10.1021/ja00192a044>
38. Song S., Asher S. A., Krimm S., Shaw K. D.: J. Am. Chem. Soc. 1991, 113, 1155. <https://doi.org/10.1021/ja00004a015>
39. Wiberg K. B., Laidig K. E.: J. Am. Chem. Soc. 1987, 109, 5935. <https://doi.org/10.1021/ja00254a006>
40a. Terenin A., Ermolaev V. L.: Trans. Faraday Soc. 1956, 52, 1042. <https://doi.org/10.1039/tf9565201042>
40b. Ermolaev V. L.: Sov. Phys. Dokl. 1967, 6, 600.
41. Wagner P. J., Kochevar I.: J. Am. Chem. Soc. 1968, 90, 2232. <https://doi.org/10.1021/ja01011a005>
42. Wiberg K. B., Laidig K. E.: J. Am. Chem. Soc. 1987, 109, 5935. <https://doi.org/10.1021/ja00254a006>
43a. Keller R. A.: J. Am. Chem. Soc. 1968, 90, 1940. <https://doi.org/10.1021/ja01010a002>
43b. Keller R. A., Dolby L. J.: J. Am. Chem. Soc. 1969, 91, 1293. <https://doi.org/10.1021/ja01034a005>