Collect. Czech. Chem. Commun.
2004, 69, 945-965
https://doi.org/10.1135/cccc20040945
Electronic Effects on the Bergman Cyclisation of Enediynes. A Review
Michael Klein, Thomas Walenzyk and Burkhard König*
Institut für Organische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
References
1a. J. Antibiot. 1985, 38, 1605.
< M., Ohkuma H., Saitoh K., Kawaguchi H., Golik J., Dubay G., Groenewald G., Krishnan B., Doyle T. W.: https://doi.org/10.7164/antibiotics.38.1605>
1b. J. Am. Chem. Soc. 1987, 109, 3461.
< J., Clardy J., Dubay G., Groenewald G., Kawaguchi H., Konishi M., Krishnan B., Ohkuma H., Saitoh K., Doyle T. W.: https://doi.org/10.1021/ja00245a048>
1c. J. Am. Chem. Soc. 1987, 109, 3462.
< J., Dubay G., Groenewald G., Kawaguchi H., Konishi M., Krishnan B., Ohkuma H., Saitoh K., Doyle T. W.: https://doi.org/10.1021/ja00245a049>
1d. Tetrahedron Lett. 1989, 30, 2497.
< J., Wong H., Vyas D. M., Doyle T. W.: https://doi.org/10.1016/S0040-4039(01)80434-2>
2a. J. Am. Chem. Soc. 1987, 109, 3464.
< M. D., Dunne T. S., Siegel M. M., Chang C. C., Morton G. O., Borders D. B.: https://doi.org/10.1021/ja00245a050>
2b. J. Am. Chem. Soc. 1987, 109, 3466.
< M. D., Dunne T. S., Chang C. C., Ellestad G. A., Siegel M. M., Morton G. O., McGahren W. J., Borders D. B.: https://doi.org/10.1021/ja00245a051>
2c. J. Antibiot. 1989, 42, 1070.
< M. D., Manning J. K., Williams D. R., Kuck N. A., Testa R. T., Borders D. B.: https://doi.org/10.7164/antibiotics.42.1070>
2d. J. Antibiot. 1989, 42, 558.
< W. M., Lechevalier M. P., Lechevalier H. A., Korshalla J., Kuck N. A., Fantini A., Wildey M. J., Thomas J., Greenstein M.: https://doi.org/10.7164/antibiotics.42.558>
2e. J. Am. Chem. Soc. 1992, 114, 985.
< M. D., Dunne T. S., Chang C. C., Siegel M. M., Morton G. O., Ellestadt G. A., McGahren W. J., Borders D. B.: https://doi.org/10.1021/ja00029a030>
2f. Curr. Pharm. Des. 2000, 6, 1841.
< J. S., Sievers E. L., Ahlert J., Shepard E., Whitwam R. E., Onwueme K. C., Ruppen M.: https://doi.org/10.2174/1381612003398564>
3a. J. Antibiot. 1989, 42, 1449.
< M., Ohkuma H., Matsumoto K., Tsuno T., Kamei H., Miyaki T., Oki T., Kawaguchi H., VanDuyne G. D., Clardy J.: https://doi.org/10.7164/antibiotics.42.1449>
3b. J. Am. Chem. Soc. 1990, 112, 3715.
< M., Ohkuma H., Tsuno T., Oki T., VanDuyne G. D., Clardy J.: https://doi.org/10.1021/ja00165a097>
3c. Eur. J. Org. Chem. 1999, 1.
< M. E., Bosse F., Niestroj A. J.: https://doi.org/10.1002/(SICI)1099-0690(199901)1999:1<1::AID-EJOC1>3.0.CO;2-D>
4. Borders D. B., Doyle T. W.: Enediyne Antibiotics as Antitumor Agents. Marcel Dekker, New York 1995.
5. For the use of enediyne cyclisation products as radical polymerisation initiators, see: Rule J. D., Wilson S. R., Moore J. S.: J. Am. Chem. Soc. 2003, 125, 12992.
6a. J. Am. Chem. Soc. 1972, 94, 660.
< R. R., Bergman R. G.: https://doi.org/10.1021/ja00757a071>
6b. Acc. Chem. Res. 1973, 6, 25.
< R. G.: https://doi.org/10.1021/ar50061a004>
7. Chem. Ber. 1994, 127, 1765.
< W. R., Hopf H., Horn C.: https://doi.org/10.1002/cber.19941270929>
8. J. Phys. Chem. A 2001, 105, 9265.
< M., Wittkopp A., Schreiner P. R.: https://doi.org/10.1021/jp0028002>
9a. Angew. Chem. 2003, 115, 5935.
< P. R., Prall M., Lutz V.: https://doi.org/10.1002/ange.200351195>
9b. Angew. Chem., Int. Ed. 2003, 46, 5757.
< P. R., Prall M., Lutz V.: https://doi.org/10.1002/anie.200351195>
10a. J. Am. Chem. Soc. 1989, 111, 8057.
< A. G., Kuo E. Y., Finney N. S.: https://doi.org/10.1021/ja00202a079>
10b. Chem. Lett. 1989, 2099.
< K., Watanabe T., Takahashi K.: https://doi.org/10.1246/cl.1989.2099>
11. Tetrahedron Lett. 1995, 36, 4975.
< M., Strittmatter M., Kiau S.: https://doi.org/10.1016/0040-4039(95)00937-8>
12a. Chem. Commun. 1999, 905.
< R. R.: https://doi.org/10.1039/a900910h>
12b. J. Am. Chem. Soc. 1990, 122, 5367.
< J. P.: https://doi.org/10.1021/ja00169a064>
12c. Chem. Commun. 1998, 4, 483.
< P. R.: https://doi.org/10.1039/a707836f>
12d. J. Am. Chem. Soc. 1998, 120, 4184.
< P. R.: https://doi.org/10.1021/ja973591a>
12e. J. Am. Chem. Soc. 1988, 110, 4866.
< K. C., Zuccarello G., Ogawa Y., Schweiger E. J., Kumazawa T.: https://doi.org/10.1021/ja00222a077>
12f. Chem. Lett. 1998, 959.
< T., Kawata S., Hirama M.: https://doi.org/10.1246/cl.1998.959>
12g. J. Org. Chem. 1994, 59, 5038.
< M. F., Neu T., Foubelo F.: https://doi.org/10.1021/jo00096a057>
13. For a recent example of conformational control in enediyne activation, see: Semmelhack M. F., Wu L., Pascal R. A., Ho D. M.: J. Am. Chem. Soc. 2003, 125, 10496.
14a. Tetrahedron Lett. 1998, 39, 3029.
< A., Shain J. C.: https://doi.org/10.1016/S0040-4039(98)00325-6>
14b. J. Chem. Soc., Perkin Trans. 1 2000, 1955.
< A., Shain J. C., Khamrai U. K., Rudra K. R.: https://doi.org/10.1039/b000963f>
14c. Eur. J. Org. Chem. 2000, 381.
< B.: https://doi.org/10.1002/(SICI)1099-0690(200002)2000:3<381::AID-EJOC381>3.0.CO;2-V>
14d. Science 1995, 269, 814.
< B. P., Millar S. P., Broene R. D., Buchwald S. L.: https://doi.org/10.1126/science.269.5225.814>
14e. J. Org. Chem. 1996, 61, 4258.
< B., Pitsch W.: https://doi.org/10.1021/jo9600971>
14f. J. Am. Chem. Soc. 2000, 122, 8245.
< E., Cremer D.: https://doi.org/10.1021/ja001017k>
14g. J. Am. Chem. Soc. 2002, 124, 3506.
< J. M., Friese S. J., Tichenor M.: https://doi.org/10.1021/ja017873t>
15a. J. Am. Chem. Soc. 1998, 120, 1835.
< A., Turro N. J.: https://doi.org/10.1021/ja9722943>
15b. J. Am. Chem. Soc. 2002, 124, 9052.
< I. V., Kovalenko S. V.: https://doi.org/10.1021/ja026630d>
16. For a recent example of photochemical DNA cleavage using metalloenediynes, see: Benites P. J., Holmberg R. C., Rawat D. S., Kraft B. J., Klein L. J., Peters G. D., Thorp H. H., Zaleski J. M.: J. Am. Chem. Soc. 2003, 125, 6434.
17. Chem. Commun. 2001, 155.
< M., Maywald M.: https://doi.org/10.1039/b007811p>
18. Chem. Rev. 2003, 103, 4077.
< A., Mandal S., Bag S. S.: https://doi.org/10.1021/cr020069k>
19. For the effect of pentamethylcyclopentadienyl ruthenium cation on the reactivity of benzo-fused enediynes, see: O’Connor J. M., Lee L. I., Ganzel P.: J. Am. Chem. Soc. 2000, 122, 12057.
20. Chem. Commun. 2003, 1156.
< S., Clark A. E., Pink M., Zaleski J. M.: https://doi.org/10.1039/b301690k>
21. J. Am. Chem. Soc. 1991, 113, 1907.
< N., Morokuma K.: https://doi.org/10.1021/ja00006a006>
22a. Tetrahedron Lett. 1989, 30, 4995.
< R., Yamanaka H., Okazaki E., Saito I.: https://doi.org/10.1016/S0040-4039(01)80564-5>
22b. J. Am. Chem. Soc. 1989, 111, 8057.
< A. G., E. Kuo Y., Finney N. S.: https://doi.org/10.1021/ja00202a079>
23. Chem. Lett. 1995, 953.
< M., Kiau S.: https://doi.org/10.1246/cl.1995.953>
24. Chem. Eur. J. 2000, 6, 1446.
< J. M., Schreiner P. R., Harris N., Wie W., Shaik S.: https://doi.org/10.1002/(SICI)1521-3765(20000417)6:8<1446::AID-CHEM1446>3.0.CO;2-I>
25. J. Org. Chem. 2002, 67, 1453.
< F., Moran D., Schleyer P. von Ragué, Prall M., Schreiner P. R.: https://doi.org/10.1021/jo015728s>
26. J. Am. Chem. Soc. 1998, 120, 4184.
< P. R.: https://doi.org/10.1021/ja973591a>
27. J. Org. Chem. 2001, 66, 1742.
< B., Pitsch W., Klein M., Vasold R., Prall M., Schreiner P. R.: https://doi.org/10.1021/jo001417q>
28a. J. Org. Chem. 1994, 59, 5038.
< M. F., Neu T., Foubelo F.: https://doi.org/10.1021/jo00096a057>
28b. J. Org. Chem. 1993, 58, 3018.
< D. L., Zhou J.: https://doi.org/10.1021/jo00063a019>
28c. Tetrahedron Lett. 1990, 31, 185.
G., Singh R.:
28c. The half-live times cannot be compared to those of the propargylic alcohol 15 on account of different experimental conditions (i.e. temperature).
29. Tetrahedron Lett. 1997, 38, 5586.
< M. F., Gu Y., Ho D. M.: https://doi.org/10.1016/S0040-4039(97)01263-X>
30. J. Comput. Chem. 2001, 22, 1605.
< M., Wittkopp A., Fokin A. A., Schreiner P. R.: https://doi.org/10.1002/jcc.1114>
31a. Angew. Chem. 2001, 113, 2356.
< H. H., Balster A., Sander W., Hrovat D. A., Borden W. T.: https://doi.org/10.1002/1521-3757(20010618)113:12<2356::AID-ANGE2356>3.0.CO;2-S>
31b. Angew. Chem., Int. Ed. 2001, 40, 2295.
< H. H., Balster A., Sander W., Hrovat D. A., Borden W. T.: https://doi.org/10.1002/1521-3773(20010618)40:12<2295::AID-ANIE2295>3.0.CO;2-W>
32. J. Am. Chem. Soc. 2003, 125, 11484.
< M., Huffman J. C., Zaleski J. M.: https://doi.org/10.1021/ja0302782>
33. Org. Lett. 2000, 2, 85.
< D. M., Anthony J. E.: https://doi.org/10.1021/ol991254w>
34. Angew. Chem., Int. Ed. Engl. 1998, 37, 489.
< B., Stengel T.: https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<489::AID-ANIE489>3.0.CO;2-N>
35. Klein M.: Ph.D. Thesis. University of Regensburg, Regensburg 2003.
36. Liebigs Ann. Chem. 1992, 855.
< M. E., Greiner B.: https://doi.org/10.1002/jlac.1992199201140>
37. Org. Lett. 2000, 2, 1757.
< G., Plourde G. W., Jr.: https://doi.org/10.1021/ol0059394>
38. J. Am. Chem. Soc. 2001, 123, 2134.
< G. B., Warner P. M.: https://doi.org/10.1021/ja0033032>
39. J. Org. Chem. 2002, 67, 5369.
< G. W., Jr., Warner P. M., Parrish D. A., Jones G. B.: https://doi.org/10.1021/jo025763e>
40. J. Am. Chem. Soc. 1993, 115, 7944.
< K. C., Dai W.-D., Hong Y. P., Tsay S.-C., Baldige K. K., Siegel J. S.: https://doi.org/10.1021/ja00071a003>
41. J. Chem. Soc., Perkin Trans. 1 2000, 1955.
< A., Shain J. C., Khamrai U. K., Rudra K. R., Basak A.: https://doi.org/10.1039/b000963f>
42. For another example of enediyne stabilisation by benzo-fusion, see: Boger D. L., Zhou J.: J. Org. Chem. 1993, 58, 3018.
43. J. Org. Chem. 1994, 59, 5038.
< M. F., Neu T., Foubelo F.: https://doi.org/10.1021/jo00096a057>
44a. Liebigs Ann. 1996, 1691.
< W. R., Hopf H., Wasser T., Zimmermann H., Werner C.: https://doi.org/10.1002/jlac.199619961030>
44b. J. Am. Chem. Soc. 1994, 116, 6401.
< P. G., Squires R. R.: https://doi.org/10.1021/ja00093a047>
44c. J. Org. Chem. 1994, 59, 5833.
< J., Calkins T. L., McMillen H. A., Jiang Y.: https://doi.org/10.1021/jo00098a055>
45. J. Am. Chem. Soc. 2001, 123, 2134.
< G. B., Warner P. M.: https://doi.org/10.1021/ja0033032>
46. Tetrahedron Lett. 2000, 41, 6955.
< N., Kim C.-S., Ballestero C., Artigas L., Diez C., Lichtenberger F., Shapiro J., Russell K. C.: https://doi.org/10.1016/S0040-4039(00)01181-3>
47. Org. Lett. 2002, 4, 1119.
< I. V., Manoharan M., Kovalenko S. V.: https://doi.org/10.1021/ol0255054>
48a. Tetrahedron Lett. 1999, 40, 2015.
< T., Takahashi M., Hirama M.: https://doi.org/10.1016/S0040-4039(99)00105-7>
48b. Tetrahedron Lett. 2000, 41, 4019.
< K. K., Thoen J. C., Uckun F. M.: https://doi.org/10.1016/S0040-4039(00)00575-X>
49. J. Phys. Chem. A 1999, 103, 7672.
< S., Fujimura Y., Hirama M.: https://doi.org/10.1021/jp991135y>
50. J. Am. Chem. Soc. 2001, 123, 2134.
< G. B., Warner P. M.: https://doi.org/10.1021/ja0033032>
51. J. Org. Chem. 1998, 63, 8229.
< C.-S., Russell K. C.: https://doi.org/10.1021/jo980879p>
52. Tetrahedron Lett. 1999, 40, 3835.
< C.-S., Russell K. C.: https://doi.org/10.1016/S0040-4039(99)00634-6>
53. Chem. Eur. J. 2000, 6, 1555.
< C.-S., Dietz C., Russell K. C.: https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1555::AID-CHEM1555>3.3.CO;2-D>
54. Heterocycles 1999, 51, 13.
N., Russell K. C.:
55. J. Am. Chem. Soc. 1997, 119, 1464.
< W. M., Kerwin S. M.: https://doi.org/10.1021/ja962328r>
56. J. Am. Chem. Soc. 1998, 120, 376.
< J., Schottelius M. J., Feichtinger D., Chen P.: https://doi.org/10.1021/ja9730223>
57. J. Am. Chem. Soc. 1998, 120, 6261.
< C. J.: https://doi.org/10.1021/ja9806579>