Collect. Czech. Chem. Commun.
2004, 69, 1050-1062
https://doi.org/10.1135/cccc20041050
Cation-π Interactions Between Alkali Metal Cations and Neutral Double Bonds
Jiaxin Hua, Leonard J. Barbourb and George W. Gokela,*
a Departments of Chemistry and Molecular Biology & Pharmacology, Division of Bioorganic Chemistry, Washington University School of Medicine, Campus Box 8103, 660 S. Euclid Ave., St. Louis, MO 63110, U.S.A.
b Department of Chemistry, University of Stellenbosch, 7602 Matieland, South Africa
References
1. Chem. Rev. 1997, 97, 1303.
< J. C., Dougherty D. A.: https://doi.org/10.1021/cr9603744>
2. J. Phys. Chem. 1981, 85, 1814.
< J., Nishizawa K., Kebarle P.: https://doi.org/10.1021/j150613a011>
3. J. Am. Chem. Soc. 1985, 107, 474.
< M., Deakyne C. A.: https://doi.org/10.1021/ja00288a034>
4. FEBS Lett. 1986, 203, 139.
< S. K., Petsko G. A.: https://doi.org/10.1016/0014-5793(86)80730-X>
5. Angew. Chem., Int. Ed. Engl. 1995, 34, 1364.
< F., Miyahara Y., Inazu T., Shinkai S.: https://doi.org/10.1002/anie.199513641>
6. J. Chem. Phys. 1998, 108, 5151.
< O. M., Weinheimer C. J., Lisy J. M.: https://doi.org/10.1063/1.476310>
7. Chem. Phys. Lett. 1990, 168, 155.
< B. C., Purnell J. W., Castleman A. W., Jr.: https://doi.org/10.1016/0009-2614(90)85122-S>
8a. J. Phys. Chem. A 1998, 102, 8946.
< R. C.: https://doi.org/10.1021/jp981371t>
8b. J. Am. Chem. Soc. 1999, 121, 2259.
< V., Dunbar R. C.: https://doi.org/10.1021/ja983272z>
8c. J. Am. Soc. Mass Spectrom. 2000, 11, 1037.
< V., Dunbar R. C., Cerda B., Wesdemiotis C.: https://doi.org/10.1016/S1044-0305(00)00181-1>
9a. J. Phys. Chem. A 1999, 103, 1394.
< J. B., Hay B. P., Dixon D. A.: https://doi.org/10.1021/jp9837380>
9b. J. Phys. Chem. A 1999, 103, 9815.
< J. B., Hay B. P.: https://doi.org/10.1021/jp990570p>
10. J. Comput. Chem. 2000, 21, 847.
< J.: https://doi.org/10.1002/1096-987X(20000730)21:10<847::AID-JCC3>3.0.CO;2-8>
11a. Science 1993, 261, 1708.
< R. A., Dougherty D. A.: https://doi.org/10.1126/science.8378771>
11b. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566.
< S., West A. P., Jr., Dougherty D. A.: https://doi.org/10.1073/pnas.93.20.10566>
11c. J. Am. Chem. Soc. 1996, 118, 2307.
< S., West A. P., Jr., Dougherty D. A.: https://doi.org/10.1021/ja9539608>
11d. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12088.
< W., Gallivan J. P., Zhang Y., Li L., Lester H. A., Dougherty D. A.: https://doi.org/10.1073/pnas.95.21.12088>
12. Protein Sci. 1998, 7, 2472.
< J.: https://doi.org/10.1002/pro.5560071127>
13. Collect. Czech. Chem. Commun. 1999, 64, 1001.
< B. T., Noll B. C., Michl J.: https://doi.org/10.1135/cccc19991001>
14. J. Am. Chem. Soc. 2002, 124, 8329.
< G. K., Lindeman S. V., Kochi J. K.: https://doi.org/10.1021/ja0203465>
15. Tetrahedron Lett. 1988, 3025.
< K. A., Viscariello A. M., Kim M., Gandour R. D., Fronczek F. R., Gokel G. W.: https://doi.org/10.1016/0040-4039(88)85076-7>
16. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6271.
< S. L., Meadows E. S., Barbour L. J., Gokel G. W.: https://doi.org/10.1073/pnas.97.12.6271>
17. J. Am. Chem. Soc. 1999, 121, 8405.
< S. L., Barbour L. J., Gokel G. W.: https://doi.org/10.1021/ja991618f>
18. J. Am. Chem. Soc. 1999, 121, 5613.
< S. L., Meadows E. S., Barbour L. J., Gokel G. W.: https://doi.org/10.1021/ja9907921>
19. Chem. Soc. Rev. 1992, 21, 39.
< G. W.: https://doi.org/10.1039/cs9922100039>
20. J. Am. Chem. Soc. 2001, 123, 3092.
< E. S., De Wall S. L., Barbour L. J., Gokel G. W.: https://doi.org/10.1021/ja003059e>
21. Chem. Rev. 1997, 97, 1303.
< J. C., Dougherty D. A.: https://doi.org/10.1021/cr9603744>
22. J. Am. Chem. Soc. 2002, 124, 10940.
< J., Barbour L. J., Gokel G. W.: https://doi.org/10.1021/ja020586k>
23. Chem. Commun. 2001, 1858.
< J., Barbour L. J., Gokel G. W.: https://doi.org/10.1039/b106589k>
24. J. Am. Chem. Soc. 2001, 123, 9486.
< J., Barbour L. J., Gokel G. W.: https://doi.org/10.1021/ja0112137>
25. J. Am. Chem. Soc. 1984, 106, 8240.
< V. J., Gokel G. W.: https://doi.org/10.1021/ja00338a038>
26. J. Am. Chem. Soc. 1986, 108, 4078.
< R. D., Fronczek F. R., Gatto V. J., Minganti C., Schultz R. A., White B. D., Arnold K. A., Mazzocchi D., Miller S. R., Gokel G. W.: https://doi.org/10.1021/ja00274a037>
27. Inorg. Chim. Acta 1983, 77, L199.
< G., Saenger W., Muller K., Wehner W., Vogtle F.: https://doi.org/10.1016/S0020-1693(00)82613-4>
28. Inorg. Chim. Acta 2001, 317, 121.
< L. J., De Wall S. L., Ferdani R., Fronczek F. R., Gokel G. W.: https://doi.org/10.1016/S0020-1693(01)00343-7>
29. J. Org. Chem. 1996, 61, 5684.
< K.-W., Wei H.-C., Kottke T., Lagow R. J.: https://doi.org/10.1021/jo960332f>
30. J. Heterocycl. Chem. 1996, 33, 933.
< A. V., Dalley N. K., Kou X., Bradshaw J. S., Pastushok V. N.: https://doi.org/10.1002/jhet.5570330363>
31. Inorg. Chem. 1996, 35, 7229.
< A. V., Bradshaw J. S., Zhang X. X., Dalley N. K., Kou X., Izatt R. M.: https://doi.org/10.1021/ic9610290>
32. J. Chem. Soc., Dalton Trans. 1996, 3871.
< Y., Akabori S.: https://doi.org/10.1039/dt9960003871>
33. Heterocycles 1997, 45, 2365.
< K., Ishige R., Kato N., Yamamoto E., Sakurai T.: https://doi.org/10.3987/COM-97-7944>
34. Acta Crystallogr., Sect. B: Struct. Sci. 1996, 52, 823.
< R., Kojic-Prodic B., Zinic M., Alihodzic S., Trinajstic N.: https://doi.org/10.1107/S0108768196006337>
35. Tetrahedron Lett. 1993, 34, 8345.
< S., Zinic M., Klaic B., Kiralj R., Kojic-Prodic B., Herceg M., Cimerman Z.: https://doi.org/10.1016/S0040-4039(00)61427-2>
36. Chem. Lett. 1992, 699.
< K., Miyahara I., Higuchi T., Toda M., Tsukube H., Matsumoto K.: https://doi.org/10.1246/cl.1992.699>
37. Inorg. Chem. 1994, 33, 5541.
< C. F., Gebbink R. J. M. K., Feiters M. C., Kooijman H., Smeets W. J. J., Spek A. L., Nolte R. J. M.: https://doi.org/10.1021/ic00102a031>
38a. Chem. Commun. 1999, 1179.
< P. D., Cragg P. J., Steed J. W.: https://doi.org/10.1039/a900252i>
38b. New J. Chem. 2002, 26, 440.
< P., Channa A., Cragg P. J., Prince P. D., Steed J. W.: https://doi.org/10.1039/b108522k>
39. J. Chem. Soc., Dalton Trans. 1975, 2374.
< D. L.: https://doi.org/10.1039/dt9750002374>
40. Vance D. E., Vance J. E.: Biochemistry of Lipids, Lipoproteins, and Membranes. Elsevier, Amsterdam 1996.
41a. Yeagle P.: The Membranes of Cells, 2nd ed. Academic Press, London 1993.
41b. J. Biol. Chem. 2002, 277, 26796.
< L. J., Kolesnick R. N., Colombini M.: https://doi.org/10.1074/jbc.M200754200>
41c. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 257.
< M.: https://doi.org/10.1146/annurev.biophys.32.110601.142439>
42. J. Am. Chem. Soc. 1995, 117, 4177.
< J. W., Kollman P. A.: https://doi.org/10.1021/ja00119a037>
43. J. Chem. Phys. 1998, 109, 8842.
< M. R., Pullins S. H., Duncan M. A.: https://doi.org/10.1063/1.477555>
44. Chem. Phys. Lett. 1999, 312, 96.
< J. E., Duncan M. A.: https://doi.org/10.1016/S0009-2614(99)00917-3>
45. Chem Phys. 2000, 256, 213.
< S. D.: https://doi.org/10.1016/S0301-0104(00)00074-4>
46. Chem. Phys. Lett. 1999, 311, 77.
< S. D.: https://doi.org/10.1016/S0009-2614(99)00805-2>
47a. Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 7, 1474.
T. E., Vitkovskaya N. M., Bernshtein V. G., Trofimov B. A.:
47b. Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 7, 1477.
N. M., Moskovskaya T. E., Trofimov B. A.:
48. J. Phys. Chem. A 2000, 104, 11420.
< J. C., Armentrout P. B.: https://doi.org/10.1021/jp002652f>
49. J. Phys. Chem. A 2003, 107, 1128.
D., Hu S., Tarakeshwar P., Kim K. S.:
50a. J. Supramol. Chem. 2001, 1, 189.
< L. J.: https://doi.org/10.1016/S1472-7862(02)00030-8>
50b. Cryst. Growth Des. 2003, 3, 3.
< J. L., Barbour L. J.: https://doi.org/10.1021/cg020063o>
51. J. Org. Chem. 1996, 61, 7585.
< A. R., Belyakov S. A., Sorochinsky A. E., Steel P. J., Schall O. F., Gokel G. W.: https://doi.org/10.1021/jo961099o>