Collect. Czech. Chem. Commun. 2004, 69, 1050-1062
https://doi.org/10.1135/cccc20041050

Cation-π Interactions Between Alkali Metal Cations and Neutral Double Bonds

Jiaxin Hua, Leonard J. Barbourb and George W. Gokela,*

a Departments of Chemistry and Molecular Biology & Pharmacology, Division of Bioorganic Chemistry, Washington University School of Medicine, Campus Box 8103, 660 S. Euclid Ave., St. Louis, MO 63110, U.S.A.
b Department of Chemistry, University of Stellenbosch, 7602 Matieland, South Africa

References

1. Ma J. C., Dougherty D. A.: Chem. Rev. 1997, 97, 1303. <https://doi.org/10.1021/cr9603744>
2. Sunner J., Nishizawa K., Kebarle P.: J. Phys. Chem. 1981, 85, 1814. <https://doi.org/10.1021/j150613a011>
3. Meot-Ner M., Deakyne C. A.: J. Am. Chem. Soc. 1985, 107, 474. <https://doi.org/10.1021/ja00288a034>
4. Burley S. K., Petsko G. A.: FEBS Lett. 1986, 203, 139. <https://doi.org/10.1016/0014-5793(86)80730-X>
5. Inokuchi F., Miyahara Y., Inazu T., Shinkai S.: Angew. Chem., Int. Ed. Engl. 1995, 34, 1364. <https://doi.org/10.1002/anie.199513641>
6. Cabarcos O. M., Weinheimer C. J., Lisy J. M.: J. Chem. Phys. 1998, 108, 5151. <https://doi.org/10.1063/1.476310>
7. Guo B. C., Purnell J. W., Castleman A. W., Jr.: Chem. Phys. Lett. 1990, 168, 155. <https://doi.org/10.1016/0009-2614(90)85122-S>
8a. Dunbar R. C.: J. Phys. Chem. A 1998, 102, 8946. <https://doi.org/10.1021/jp981371t>
8b. Ryzhov V., Dunbar R. C.: J. Am. Chem. Soc. 1999, 121, 2259. <https://doi.org/10.1021/ja983272z>
8c. Ryzhov V., Dunbar R. C., Cerda B., Wesdemiotis C.: J. Am. Soc. Mass Spectrom. 2000, 11, 1037. <https://doi.org/10.1016/S1044-0305(00)00181-1>
9a. Nicholas J. B., Hay B. P., Dixon D. A.: J. Phys. Chem. A 1999, 103, 1394. <https://doi.org/10.1021/jp9837380>
9b. Nicholas J. B., Hay B. P.: J. Phys. Chem. A 1999, 103, 9815. <https://doi.org/10.1021/jp990570p>
10. Wouters J.: J. Comput. Chem. 2000, 21, 847. <https://doi.org/10.1002/1096-987X(20000730)21:10<847::AID-JCC3>3.0.CO;2-8>
11a. Kumpf R. A., Dougherty D. A.: Science 1993, 261, 1708. <https://doi.org/10.1126/science.8378771>
11b. Mecozzi S., West A. P., Jr., Dougherty D. A.: Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566. <https://doi.org/10.1073/pnas.93.20.10566>
11c. Mecozzi S., West A. P., Jr., Dougherty D. A.: J. Am. Chem. Soc. 1996, 118, 2307. <https://doi.org/10.1021/ja9539608>
11d. Zhonge W., Gallivan J. P., Zhang Y., Li L., Lester H. A., Dougherty D. A.: Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12088. <https://doi.org/10.1073/pnas.95.21.12088>
12. Wouters J.: Protein Sci. 1998, 7, 2472. <https://doi.org/10.1002/pro.5560071127>
13. King B. T., Noll B. C., Michl J.: Collect. Czech. Chem. Commun. 1999, 64, 1001. <https://doi.org/10.1135/cccc19991001>
14. Fukin G. K., Lindeman S. V., Kochi J. K.: J. Am. Chem. Soc. 2002, 124, 8329. <https://doi.org/10.1021/ja0203465>
15. Arnold K. A., Viscariello A. M., Kim M., Gandour R. D., Fronczek F. R., Gokel G. W.: Tetrahedron Lett. 1988, 3025. <https://doi.org/10.1016/0040-4039(88)85076-7>
16. De Wall S. L., Meadows E. S., Barbour L. J., Gokel G. W.: Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6271. <https://doi.org/10.1073/pnas.97.12.6271>
17. De Wall S. L., Barbour L. J., Gokel G. W.: J. Am. Chem. Soc. 1999, 121, 8405. <https://doi.org/10.1021/ja991618f>
18. De Wall S. L., Meadows E. S., Barbour L. J., Gokel G. W.: J. Am. Chem. Soc. 1999, 121, 5613. <https://doi.org/10.1021/ja9907921>
19. Gokel G. W.: Chem. Soc. Rev. 1992, 21, 39. <https://doi.org/10.1039/cs9922100039>
20. Meadows E. S., De Wall S. L., Barbour L. J., Gokel G. W.: J. Am. Chem. Soc. 2001, 123, 3092. <https://doi.org/10.1021/ja003059e>
21. Ma J. C., Dougherty D. A.: Chem. Rev. 1997, 97, 1303. <https://doi.org/10.1021/cr9603744>
22. Hu J., Barbour L. J., Gokel G. W.: J. Am. Chem. Soc. 2002, 124, 10940. <https://doi.org/10.1021/ja020586k>
23. Hu J., Barbour L. J., Gokel G. W.: Chem. Commun. 2001, 1858. <https://doi.org/10.1039/b106589k>
24. Hu J., Barbour L. J., Gokel G. W.: J. Am. Chem. Soc. 2001, 123, 9486. <https://doi.org/10.1021/ja0112137>
25. Gatto V. J., Gokel G. W.: J. Am. Chem. Soc. 1984, 106, 8240. <https://doi.org/10.1021/ja00338a038>
26. Gandour R. D., Fronczek F. R., Gatto V. J., Minganti C., Schultz R. A., White B. D., Arnold K. A., Mazzocchi D., Miller S. R., Gokel G. W.: J. Am. Chem. Soc. 1986, 108, 4078. <https://doi.org/10.1021/ja00274a037>
27. Weber G., Saenger W., Muller K., Wehner W., Vogtle F.: Inorg. Chim. Acta 1983, 77, L199. <https://doi.org/10.1016/S0020-1693(00)82613-4>
28. Barbour L. J., De Wall S. L., Ferdani R., Fronczek F. R., Gokel G. W.: Inorg. Chim. Acta 2001, 317, 121. <https://doi.org/10.1016/S0020-1693(01)00343-7>
29. Chi K.-W., Wei H.-C., Kottke T., Lagow R. J.: J. Org. Chem. 1996, 61, 5684. <https://doi.org/10.1021/jo960332f>
30. Bordunov A. V., Dalley N. K., Kou X., Bradshaw J. S., Pastushok V. N.: J. Heterocycl. Chem. 1996, 33, 933. <https://doi.org/10.1002/jhet.5570330363>
31. Bordunov A. V., Bradshaw J. S., Zhang X. X., Dalley N. K., Kou X., Izatt R. M.: Inorg. Chem. 1996, 35, 7229. <https://doi.org/10.1021/ic9610290>
32. Habata Y., Akabori S.: J. Chem. Soc., Dalton Trans. 1996, 3871. <https://doi.org/10.1039/dt9960003871>
33. Kubo K., Ishige R., Kato N., Yamamoto E., Sakurai T.: Heterocycles 1997, 45, 2365. <https://doi.org/10.3987/COM-97-7944>
34. Kiralj R., Kojic-Prodic B., Zinic M., Alihodzic S., Trinajstic N.: Acta Crystallogr., Sect. B: Struct. Sci. 1996, 52, 823. <https://doi.org/10.1107/S0108768196006337>
35. Alihodzic S., Zinic M., Klaic B., Kiralj R., Kojic-Prodic B., Herceg M., Cimerman Z.: Tetrahedron Lett. 1993, 34, 8345. <https://doi.org/10.1016/S0040-4039(00)61427-2>
36. Hirotsu K., Miyahara I., Higuchi T., Toda M., Tsukube H., Matsumoto K.: Chem. Lett. 1992, 699. <https://doi.org/10.1246/cl.1992.699>
37. Martens C. F., Gebbink R. J. M. K., Feiters M. C., Kooijman H., Smeets W. J. J., Spek A. L., Nolte R. J. M.: Inorg. Chem. 1994, 33, 5541. <https://doi.org/10.1021/ic00102a031>
38a. Prince P. D., Cragg P. J., Steed J. W.: Chem. Commun. 1999, 1179. <https://doi.org/10.1039/a900252i>
38b. Arya P., Channa A., Cragg P. J., Prince P. D., Steed J. W.: New J. Chem. 2002, 26, 440. <https://doi.org/10.1039/b108522k>
39. Hughes D. L.: J. Chem. Soc., Dalton Trans. 1975, 2374. <https://doi.org/10.1039/dt9750002374>
40. Vance D. E., Vance J. E.: Biochemistry of Lipids, Lipoproteins, and Membranes. Elsevier, Amsterdam 1996.
41a. Yeagle P.: The Membranes of Cells, 2nd ed. Academic Press, London 1993.
41b. Siskind L. J., Kolesnick R. N., Colombini M.: J. Biol. Chem. 2002, 277, 26796. <https://doi.org/10.1074/jbc.M200754200>
41c. Edidin M.: Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 257. <https://doi.org/10.1146/annurev.biophys.32.110601.142439>
42. Caldwell J. W., Kollman P. A.: J. Am. Chem. Soc. 1995, 117, 4177. <https://doi.org/10.1021/ja00119a037>
43. France M. R., Pullins S. H., Duncan M. A.: J. Chem. Phys. 1998, 109, 8842. <https://doi.org/10.1063/1.477555>
44. Reddic J. E., Duncan M. A.: Chem. Phys. Lett. 1999, 312, 96. <https://doi.org/10.1016/S0009-2614(99)00917-3>
45. Zaric S. D.: Chem Phys. 2000, 256, 213. <https://doi.org/10.1016/S0301-0104(00)00074-4>
46. Zaric S. D.: Chem. Phys. Lett. 1999, 311, 77. <https://doi.org/10.1016/S0009-2614(99)00805-2>
47a. Moskovskaya T. E., Vitkovskaya N. M., Bernshtein V. G., Trofimov B. A.: Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 7, 1474.
47b. Vitkovskaya N. M., Moskovskaya T. E., Trofimov B. A.: Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 7, 1477.
48. Amicangelo J. C., Armentrout P. B.: J. Phys. Chem. A 2000, 104, 11420. <https://doi.org/10.1021/jp002652f>
49. Kim D., Hu S., Tarakeshwar P., Kim K. S.: J. Phys. Chem. A 2003, 107, 1128.
50a. Barbour L. J.: J. Supramol. Chem. 2001, 1, 189. <https://doi.org/10.1016/S1472-7862(02)00030-8>
50b. Atwood J. L., Barbour L. J.: Cryst. Growth Des. 2003, 3, 3. <https://doi.org/10.1021/cg020063o>
51. Katritzky A. R., Belyakov S. A., Sorochinsky A. E., Steel P. J., Schall O. F., Gokel G. W.: J. Org. Chem. 1996, 61, 7585. <https://doi.org/10.1021/jo961099o>