Collect. Czech. Chem. Commun. 2004, 69, 1395-1428
https://doi.org/10.1135/cccc20041395

Electron Binding to Nucleic Acid Bases. Experimental and Theoretical Studies. A Review

Daniel Svozil*, Pavel Jungwirth and Zdeněk Havlas

Institute of Organic Chemistry and Biochemistry and Centre for Complex Molecular Systems and Biomolecules, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

References

1. Kasai H., Yamaizumi Z., Berger M., Cadet J.: J. Am. Chem. Soc. 1992, 114, 9692. <https://doi.org/10.1021/ja00050a078>
2. Lewis F., Letsinger R., Wasielewski M.: Acc. Chem. Res. 2001, 34, 159. <https://doi.org/10.1021/ar0000197>
3. O’Neill M., Becker H., Wan C., Barton J., Zewail A.: Angew. Chem., Int. Ed. 2003, 42, 5896. <https://doi.org/10.1002/anie.200352831>
4. Lewis F., Liu J., Zuo X., Hayes R., Wasielewski M.: J. Am. Chem. Soc. 2003, 125, 4850. <https://doi.org/10.1021/ja029390a>
5. Jortner J., Bixon M., Langenbacher T., Michel-Beyerle M.: Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12759. <https://doi.org/10.1073/pnas.95.22.12759>
6. Henderson P., Jones D., Hampikian G., Kan Y., Schuster G.: Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8353. <https://doi.org/10.1073/pnas.96.15.8353>
7. Loft S., Poulsen H.: J. Mol. Med. 1996, 74, 297. <https://doi.org/10.1007/BF00207507>
8. Von Sonntag C., Huttermann J., Schulte-Frohlinde D. (Eds): Free-Radical and Radiation-Induced Damage to DNA. Gordon&Breach Publishing Group, New York 1989.
9. Fuciarelli A. F., Zimbrick J. D. (Eds): Radiation Damage in DNA: Structure/Function Relationships at Early Times. Battelle Press, Columbus 1995.
10. Boudaiffa B., Cloutier P., Hunting D., Huels M., Sanche L.: M S-Medecine Sciences 2000, 16, 1281.
11. Boudaiffa B., Cloutier P., Hunting D., Huels M., Sanche L.: Science 2000, 287, 1658.
12. Steenken S.: Chem. Rev. 1989, 89, 503. <https://doi.org/10.1021/cr00093a003>
13. Huttermann J., Voit K., Oloff H., Kohnlein W., Graslund A., Rupprecht A.: Faraday Discuss. Chem. Soc. 1984, 135. <https://doi.org/10.1039/dc9847800135>
14. Breen A., Murphy J.: Free Radical Biol. Med. 1995, 18, 1033. <https://doi.org/10.1016/0891-5849(94)00209-3>
15. Von Sonntag C. (Ed.): Chemical Basis of Radiation Biology. Taylor&Francis, London 1987.
16. Burrows C., Muller J.: Chem. Rev. 1998, 98, 1109. <https://doi.org/10.1021/cr960421s>
17. Grebneva H.: J. Mol. Struct. 2003, 645, 133. <https://doi.org/10.1016/S0022-2860(02)00578-1>
18. Berdys J., Anusiewicz I., Skurski P., Simons J.: J. Am. Chem. Soc. 2004, 126, 6441. <https://doi.org/10.1021/ja049876m>
19. Dandliker P., Holmlin R., Barton J.: Science 1997, 275, 1465. <https://doi.org/10.1126/science.275.5305.1465>
20. Dandliker P., Nunez M., Barton J.: Biochemistry 1998, 37, 6491. <https://doi.org/10.1021/bi980041w>
21. Vicic D., Odom D., Nunez M., Gianolio D., McLaughlin L., Barton J.: J. Am. Chem. Soc. 2000, 122, 8603. <https://doi.org/10.1021/ja000280i>
22. Carell T.: Angew. Chem., Int. Ed. Engl. 1995, 34, 2491. <https://doi.org/10.1002/anie.199524911>
23. Carell T., Epple R.: Eur. J. Org. Chem. 1998, 1245. <https://doi.org/10.1002/(SICI)1099-0690(199807)1998:7<1245::AID-EJOC1245>3.0.CO;2-8>
24. Heller A.: Faraday Discuss. Chem. Soc. 2000, 1. <https://doi.org/10.1039/b006196o>
25. Voityuk A., Siriwong K., Rösch N.: Phys. Chem. Chem. Phys. 2001, 3, 5421. <https://doi.org/10.1039/b105432p>
26. Delaney S., Barton J.: J. Org. Chem. 2003, 68, 6475. <https://doi.org/10.1021/jo030095y>
27. Kelley S., Jackson N., Hill M., Barton J.: Angew. Chem., Int. Ed. 1999, 38, 941. <https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<941::AID-ANIE941>3.0.CO;2-7>
28. Kelley S., Boon E., Barton J., Jackson N., Hill M.: Nucleic Acids Res. 1999, 27, 4830. <https://doi.org/10.1093/nar/27.24.4830>
29. Boon E., Ceres D., Drummond T., Hill M., Barton J.: Nat. Biotechnol. 2000, 18, 1096. <https://doi.org/10.1038/80301>
30. Fink H., Schonenberger C.: Nature 1999, 398, 407. <https://doi.org/10.1038/18855>
31. Fink H.: Cell. Mol. Life Sci. 2001, 58, 1. <https://doi.org/10.1007/PL00000770>
32. Robertson N., McGowan C.: Chem. Soc. Rev. 2003, 32, 96. <https://doi.org/10.1039/b206919a>
33. Ward M.: J. Chem. Educ. 2001, 78, 1021. <https://doi.org/10.1021/ed078p1021.1>
34. Carroll R., Gorman C.: Angew. Chem., Int. Ed. 2002, 41, 4379. <https://doi.org/10.1002/1521-3773(20021202)41:23<4378::AID-ANIE4378>3.0.CO;2-A>
35. Eley D. M., Spivey D. I.: Trans. Faraday Soc. 1962, 58, 411. <https://doi.org/10.1039/tf9625800411>
36. Giese B.: Curr. Opin. Chem. Biol. 2002, 6, 612. <https://doi.org/10.1016/S1367-5931(02)00364-2>
37. Wagenknecht H.: Angew. Chem., Int. Ed. 2003, 42, 2454. <https://doi.org/10.1002/anie.200301629>
38. Boon E., Barton J.: Curr. Opin. Struct. Biol. 2002, 12, 320. <https://doi.org/10.1016/S0959-440X(02)00327-5>
39. VanHuis T., Galbraith J., Schaefer H.: Mol. Phys. 1996, 89, 607. <https://doi.org/10.1080/00268979609482497>
40. Simons J., Jordan K.: Chem. Rev. 1987, 87, 535. <https://doi.org/10.1021/cr00079a004>
41. Simons J.: Chem. Phys. Lett. 2002, 5, 55.
42. Desfrancois C., AbdoulCarime H., Schermann J.: Int. J. Mod. Phys. B 1996, 10, 1339. <https://doi.org/10.1142/S0217979296000520>
43. Gutowski M., Skurski P.: Recent Res. Dev. Phys. Chem. 1999, 3, 245.
44. Jordan K., Wang F.: Annu. Rev. Phys. Chem. 2003, 54, 367. <https://doi.org/10.1146/annurev.physchem.54.011002.103851>
45. Fermi E., Teller E.: Phys. Rev. 1947, 72, 399. <https://doi.org/10.1103/PhysRev.72.399>
46. Turner J. E.: Am. J. Phys. 1977, 45, 758. <https://doi.org/10.1119/1.10767>
47. Crawford O. H.: Chem. Phys. Lett. 1968, 2, 461. <https://doi.org/10.1016/0009-2614(65)80011-2>
48. Garrett W. R.: Chem. Phys. Lett. 1970, 5, 393. <https://doi.org/10.1016/0009-2614(70)80045-8>
49. Garrett W. R.: Phys. Rev. A: At., Mol., Opt. Phys. 1971, 3, 961. <https://doi.org/10.1103/PhysRevA.3.961>
50. Crawford H. O.: Proc. R. Soc. London, Ser. 1967, 91, 279.
51. Crawford H. O., Dalgarno A.: Chem. Phys. Lett. 1967, 1, 23. <https://doi.org/10.1016/0009-2614(79)80006-8>
52. Desfrancois C., Abdoulcarime H., Khelifa N., Schermann J.: Phys. Rev. Lett. 1994, 73, 2436. <https://doi.org/10.1103/PhysRevLett.73.2436>
53. Desfrancois C., Abdoulcarime H., Adjouri C., Khelifa N., Schermann J.: Europhys. Lett. 1994, 26, 25. <https://doi.org/10.1209/0295-5075/26/1/005>
54. Desfrancois C., AbdoulCarime H., Schermann J.: J. Chem. Phys. 1996, 104, 7792. <https://doi.org/10.1063/1.471484>
55. Echenique P., Pendry J.: Prog. Surf. Sci. 1989, 32, 111. <https://doi.org/10.1016/0079-6816(89)90015-4>
56. Schoenlein R., Fujimoto J., Eesley G., Capehart T.: Phys. Rev. Lett. 1988, 61, 2596. <https://doi.org/10.1103/PhysRevLett.61.2596>
57. Haberland H., Kolar T., Reiners T.: Phys. Rev. Lett. 1989, 63, 1219. <https://doi.org/10.1103/PhysRevLett.63.1219>
58. Martyna G., Berne B.: J. Chem. Phys. 1988, 88, 4516. <https://doi.org/10.1063/1.453759>
59. Martyna G., Berne B.: J. Chem. Phys. 1989, 90, 3744. <https://doi.org/10.1063/1.455833>
60. Skurski P., Rak J., Simons J.: J. Chem. Phys. 2001, 115, 11193. <https://doi.org/10.1063/1.1419059>
61. Skurski P., Dabkowska I., Sawicka A., Rak J.: Chem. Phys. 2002, 279, 101. <https://doi.org/10.1016/S0301-0104(02)00488-3>
62. Bezchastnov V., Schmelcher P., Cederbaum L.: Phys. Chem. Chem. Phys. 2003, 5, 4981. <https://doi.org/10.1039/b309379b>
63. Bowers M. T. (Ed.): Gas Phase Ion Chemistry: Ions and Light. Academic Press, San Diego 1984.
64. Majer J. P. (Ed.): Ion and Cluster Ion Spectroscopy and Structure. Elsevier, Amsterdam 1989.
65. Desfrancois C., Carles S., Schermann J.: Chem. Rev. 2000, 100, 3943. <https://doi.org/10.1021/cr990061j>
66. Compton R., Carman H., Desfrancois C., Abdoul-Carime H., Schermann J., Hendricks J., Lyapustina S., Bowen K.: J. Chem. Phys. 1996, 105, 3472. <https://doi.org/10.1063/1.472993>
67. Hendricks J., Lyapustina S., De Clercq H., Bowen K.: J. Chem. Phys. 1998, 108, 8. <https://doi.org/10.1063/1.475360>
68. Dunning F.: J. Phys. B: At., Mol. Opt. Phys. 1995, 28, 1645. <https://doi.org/10.1088/0953-4075/28/9/006>
69. Ghen E., Chen E., Wentworth W.: Biochem. Biophys. Res. Commun. 1990, 171, 97.
70. Wiley J., Robinson J., Ehdaie S., Chen E., Chen E., Wentworth W.: Biochem. Biophys. Res. Commun. 1991, 180, 841. <https://doi.org/10.1016/S0006-291X(05)81141-6>
71. Chen E., Wiley J., Batten C., Wentworth W.: J. Phys. Chem. 1994, 98, 88. <https://doi.org/10.1021/j100052a016>
72. Chen E., Chen E., Sane N.: Biochem. Biophys. Res. Commun. 1998, 246, 228. <https://doi.org/10.1006/bbrc.1998.8584>
73. Chen E., Chen E.: J. Phys. Chem. B 2000, 104, 7835. <https://doi.org/10.1021/jp001553z>
74. Desfrancois C., Periquet V., Bouteiller Y., Schermann J.: J. Phys. Chem. A 1998, 102, 1274. <https://doi.org/10.1021/jp9728417>
75. Hendricks J., Lyapustina S., De Clercq H., Snodgrass J., Bowen K.: J. Chem. Phys. 1996, 104, 7788. <https://doi.org/10.1063/1.471482>
76. Schiedt J., Weinkauf R., Neumark D., Schlag E.: Chem. Phys. 1998, 239, 511. <https://doi.org/10.1016/S0301-0104(98)00361-9>
77. Periquet V., Moreau A., Carles S., Schermann J., Desfrancois C.: J. Electron Spectrosc. Relat. Phenom. 2000, 106, 141. <https://doi.org/10.1016/S0368-2048(99)00072-9>
78. Boudaiffa B., Cloutier P., Hunting D., Huels M., Sanche L.: Science 2000, 287, 1658.
79. Nenner I., Schulz G. J.: J. Chem. Phys. 1975, 62, 1747. <https://doi.org/10.1063/1.430700>
80. Wesolowski S., Leininger M., Pentchev P., Schaefer H.: J. Am. Chem. Soc. 2001, 123, 4023. <https://doi.org/10.1021/ja003814o>
81. Jordan K., Burrow P.: Chem. Rev. 1987, 87, 557. <https://doi.org/10.1021/cr00079a005>
82. Aflatooni K., Gallup G., Burrow P.: J. Phys. Chem. A 1998, 102, 6205. <https://doi.org/10.1021/jp980865n>
83. Harinipriya S., Sangaranarayanan M.: J. Mol. Struct. 2003, 644, 133. <https://doi.org/10.1016/S0022-2860(02)00469-6>
84. Desfrancois C., Abdoul-Carime H., Carles S., Periquet V., Schermann J., Smith D., Adamowicz L.: J. Chem. Phys. 1999, 110, 11876. <https://doi.org/10.1063/1.479175>
85. Smith D., Smets J., Elkadi Y., Adamowicz L.: J. Phys. Chem. A 1997, 101, 8123. <https://doi.org/10.1021/jp971630z>
86. Dolgounitcheva O., Zakrzewski V., Ortiz J.: J. Phys. Chem. A 2001, 105, 8782. <https://doi.org/10.1021/jp0110760>
87. Falcetta M., Jordan K.: J. Phys. Chem. 1990, 94, 5666. <https://doi.org/10.1021/j100378a012>
88. Falcetta M., Jordan K.: J. Am. Chem. Soc. 1991, 113, 2903. <https://doi.org/10.1021/ja00008a018>
89. Staley S., Strnad J.: J. Phys. Chem. 1994, 98, 116. <https://doi.org/10.1021/j100052a020>
90. Li X., Cai Z., Sevilla M.: J. Phys. Chem. A 2002, 106, 9345. <https://doi.org/10.1021/jp021322n>
91. Galbraith J., Schaefer H.: J. Chem. Phys. 1996, 105, 862. <https://doi.org/10.1063/1.471933>
92. Tschumper G., Schaefer H.: J. Chem. Phys. 1997, 107, 2529. <https://doi.org/10.1063/1.474593>
93. Rösch N., Trickey S.: J. Chem. Phys. 1997, 106, 8940. <https://doi.org/10.1063/1.473946>
94. Rienstra-Kiracofe J., Tschumper G., Schaefer H., Nandi S., Ellison G.: Chem. Rev. 2002, 102, 231. <https://doi.org/10.1021/cr990044u>
95. Jordan K. D., Luken W.: J. Chem. Phys. 1976, 64, 2760. <https://doi.org/10.1063/1.432599>
96. Adamowicz L., Bartlett R.: J. Chem. Phys. 1985, 83, 6268. <https://doi.org/10.1063/1.449576>
97. Adamowicz L., Bartlett R.: Chem. Phys. Lett. 1986, 129, 159. <https://doi.org/10.1016/0009-2614(86)80189-0>
98. Adamowicz L., Bartlett R.: J. Chem. Phys. 1988, 88, 313. <https://doi.org/10.1063/1.454656>
99. Gutowski M., Skurski P., Boldyrev A., Simons J., Jordan K.: Phys. Rev. A 1996, 54, 1906. <https://doi.org/10.1103/PhysRevA.54.1906>
100. Dolgounitcheva O., Zakrzewski V., Ortiz J.: Chem. Phys. Lett. 1999, 307, 220. <https://doi.org/10.1016/S0009-2614(99)00492-3>
101. Roehrig G., Oyler N., Adamowicz L.: J. Phys. Chem. 1995, 99, 14285. <https://doi.org/10.1021/j100039a015>
102. Gutowski M., Jordan K., Skurski P.: J. Phys. Chem. A 1998, 102, 2624. <https://doi.org/10.1021/jp980123u>
103. Skurski P., Gutowski M., Simons J.: Int. J. Quantum Chem. 2000, 80, 1024. <https://doi.org/10.1002/1097-461X(2000)80:4/5<1024::AID-QUA51>3.0.CO;2-P>
104. Oyler N., Adamowicz L.: J. Phys. Chem. 1993, 97, 11122. <https://doi.org/10.1021/j100144a037>
105. Oyler N., Adamowicz L.: Chem. Phys. Lett. 1994, 219, 223. <https://doi.org/10.1016/0009-2614(94)87049-7>
106. Smets J., Mccarthy W., Adamowicz L.: J. Phys. Chem. 1996, 100, 14655. <https://doi.org/10.1021/jp960309y>
107. Sevilla M., Besler B., Colson A.: J. Phys. Chem. 1995, 99, 1060. <https://doi.org/10.1021/j100003a032>
108. Colson A., Sevilla M.: Int. J. Radiat. Biol. 1995, 67, 627. <https://doi.org/10.1080/09553009514550751>
109. Wetmore S., Himo F., Boyd R., Eriksson L.: J. Phys. Chem. B 1998, 102, 7484. <https://doi.org/10.1021/jp981691c>
110. Wetmore S., Boyd R., Eriksson L.: J. Phys. Chem. B 1998, 102, 5369. <https://doi.org/10.1021/jp9809078>
111. Wetmore S., Boyd R., Eriksson L.: J. Phys. Chem. B 1998, 102, 9332. <https://doi.org/10.1021/jp982437n>
112. Wetmore S., Boyd R., Eriksson L.: J. Phys. Chem. B 1998, 102, 10602. <https://doi.org/10.1021/jp982417l>
113. Wetmore S., Boyd R., Eriksson L.: Chem. Phys. Lett. 2000, 322, 129. <https://doi.org/10.1016/S0009-2614(00)00391-2>
114. Russo N., Toscano M., Grand A.: J. Comput. Chem. 2000, 21, 1243. <https://doi.org/10.1002/1096-987X(20001115)21:14<1243::AID-JCC3>3.0.CO;2-M>
115. Huels M., Hahndorf I., Illenberger E., Sanche L.: J. Chem. Phys. 1998, 108, 1309. <https://doi.org/10.1063/1.475503>
116. Dewar M., Zoebisch E., Healy E., Stewart J.: J. Am. Chem. Soc. 1985, 107, 3902. <https://doi.org/10.1021/ja00299a024>
117. Voityuk A., Michel-Beyerle M., Rösch N.: Chem. Phys. Lett. 2001, 342, 231. <https://doi.org/10.1016/S0009-2614(01)00580-2>
118. Clowney L., Jain S., Srinivasan A., Westbrook J., Olson W., Berman H.: J. Am. Chem. Soc. 1996, 118, 509. <https://doi.org/10.1021/ja952883d>
119. Walch S.: Chem. Phys. Lett. 2003, 374, 496. <https://doi.org/10.1016/S0009-2614(03)00735-8>
120. Preuss M., Schmidt W., Seino K., Furthmuller J., Bechstedt F.: J. Comput. Chem. 2004, 25, 112. <https://doi.org/10.1002/jcc.10372>
121. Perdew J., Chevary J., Vosko S., Jackson K., Pederson M., Singh D., Fiolhais C.: Phys. Rev. B: Condens. Matter 1992, 46, 6671. <https://doi.org/10.1103/PhysRevB.46.6671>
122. Perdew J., Burke K., Ernzerhof M.: Phys. Rev. Lett. 1996, 77, 3865. <https://doi.org/10.1103/PhysRevLett.77.3865>
123. Furthmuller J., Kackell P., Bechstedt F., Kresse G.: Phys. Rev. B: Condens. Matter 2000, 61, 4576. <https://doi.org/10.1103/PhysRevB.61.4576>
124. Smith D., Jalbout A., Smets J., Adamowicz L.: Chem. Phys. 2000, 260, 45. <https://doi.org/10.1016/S0301-0104(00)00245-7>
125. Sponer J., Leszczynski J., Hobza P.: Biopolymers 2001, 61, 3. <https://doi.org/10.1002/1097-0282(2001)61:1<3::AID-BIP10048>3.0.CO;2-4>
126. Gutowski M., Dabkowska I., Rak J., Xu S., Nilles J., Radisic D., Bowen K.: Eur. Phys. J. D 2002, 20, 431. <https://doi.org/10.1140/epjd/e2002-00168-1>
127. Dolgounitcheva O., Zakrzewski V., Ortiz J.: J. Phys. Chem. A 1999, 103, 7912. <https://doi.org/10.1021/jp991950d>
128. Haranczyk M., Bachorz R., Rak J., Gutowski M., Radisic D., Stokes S., Nilles J., Bowen K.: J. Phys. Chem. B 2003, 107, 7889. <https://doi.org/10.1021/jp034640a>
129. Smets J., Smith D., Elkadi Y., Adamowicz L.: J. Phys. Chem. A 1997, 101, 9152. <https://doi.org/10.1021/jp971396c>
130. Gutowski M., Hall C. S, Adamowicz L., Hendricks J., De Clercq H., Lyapustina S., Nilles J., Xu S., Bowen K.: Phys. Rev. Lett. 2002, 88, 143001. <https://doi.org/10.1103/PhysRevLett.88.143001>
131. Jalbout A., Hall-Black C., Adamowicz L.: Chem. Phys. Lett. 2002, 354, 128. <https://doi.org/10.1016/S0009-2614(02)00121-5>
132. Hall C., Adamowicz L.: Mol. Phys. 2002, 100, 3469. <https://doi.org/10.1080/0026897021000021552>
133. Hall C., Adamowicz L.: J. Phys. Chem. A 2002, 106, 6099. <https://doi.org/10.1021/jp0145107>
134. Jalbout A., Pichugin K., Adamowicz L.: Eur. Phys. J. D 2003, 26, 197. <https://doi.org/10.1140/epjd/e2003-00224-4>
135. Stepanian S., Jalbout A., Hall C., Adamowicz L.: J. Phys. Chem. A 2003, 107, 7911. <https://doi.org/10.1021/jp0304881>
136. Jalbout A., Pichugin K., Adamowicz L.: Chem. Phys. Lett. 2003, 376, 799. <https://doi.org/10.1016/S0009-2614(03)01103-5>
137. Laxer A., Major D., Gottlieb H., Fischer B.: J. Org. Chem. 2001, 66, 5463. <https://doi.org/10.1021/jo010344n>
138. Hanus M., Kabelac M., Rejnek J., Ryjacek F., Hobza P.: J. Phys. Chem. B 2004, 108, 2087. <https://doi.org/10.1021/jp036090m>
139. Jalbout A., Adamowicz L.: J. Phys. Chem. A 2001, 105, 1033. <https://doi.org/10.1021/jp002496c>
140. Jalbout A., Adamowicz L.: J. Mol. Struct. 2002, 605, 93. <https://doi.org/10.1016/S0022-2860(01)00753-0>
141. Latajka Z., Person W., Morokuma K.: J. Mol. Struct. (Theochem) 1986, 28, 253. <https://doi.org/10.1016/0166-1280(86)80063-X>
142. Szczepaniak K., Szczesniak M.: J. Mol. Struct. 1987, 156, 29. <https://doi.org/10.1016/0022-2860(87)85038-X>
143. Sheina G., Stepanian S., Radchenko E., Blagoi Y.: J. Mol. Struct. 1987, 158, 275. <https://doi.org/10.1016/0022-2860(87)80024-8>
144. Hanus M., Ryjacek F., Kabelac M., Kubar T., Bogdan T., Trygubenko S., Hobza P.: J. Am. Chem. Soc. 2003, 125, 7678. <https://doi.org/10.1021/ja034245y>
145. Roehrig G., Oyler N., Adamowicz L.: Chem. Phys. Lett. 1994, 225, 265. <https://doi.org/10.1016/0009-2614(94)00611-3>
146. Trygubenko S., Bogdan T., Rueda M., Orozco M., Luque F., Sponer J., Slavicek P., Hobza P.: Phys. Chem. Chem. Phys. 2002, 4, 4192. <https://doi.org/10.1039/b202156k>
147. Gutsev G. I., Boldyrev A. I.: Adv. Chem. Phys. 1985, 6, 169. <https://doi.org/10.1002/9780470142851.ch3>
148. Dunning T. H., McKoy V.: J. Chem. Phys. 1967, 47, 1735. <https://doi.org/10.1063/1.1712158>
149. Dunning T. H., McKoy V.: J. Chem. Phys. 1968, 48, 5263. <https://doi.org/10.1063/1.1668203>
150. Shibuya T. I., McKoy V.: J. Chem. Phys. 1970, 53, 3308. <https://doi.org/10.1063/1.1674482>
151. Simons J., Smith W. D.: J. Chem. Phys. 1973, 58, 4899. <https://doi.org/10.1063/1.1679074>
152. Simons J.: Annu. Rev. Phys. Chem. 1977, 28, 15. <https://doi.org/10.1146/annurev.pc.28.100177.000311>
153. Banerjee A., Shepard R., Simons J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 389.
154. Nooijen M., Bartlett R.: J. Chem. Phys. 1995, 102, 3629. <https://doi.org/10.1063/1.468592>
155. Desfrancois C., Periquet V., Lyapustina S., Lippa T., Robinson D., Bowen K., Nonaka H., Compton R.: J. Chem. Phys. 1999, 111, 4569. <https://doi.org/10.1063/1.479218>
156. Lecomte F., Carles S., Desfrancois C., Johnson M.: J. Chem. Phys. 2000, 113, 10973. <https://doi.org/10.1063/1.1326476>
157. Sommerfeld T.: Phys. Chem. Chem. Phys. 2002, 4, 2511. <https://doi.org/10.1039/b202143a>
158. Suess L., Parthasarathy R., Dunning F.: J. Chem. Phys. 2003, 119, 9532. <https://doi.org/10.1063/1.1615516>
159. Gutsev G., Bartlett R.: J. Chem. Phys. 1996, 105, 8785. <https://doi.org/10.1063/1.472657>
160. Al-Jihad I., Smets J., Adamowicz L.: J. Phys. Chem. A 2000, 104, 2994. <https://doi.org/10.1021/jp993975i>
161. Smets J., Jalbout A., Adamowicz L.: Chem. Phys. Lett. 2001, 342, 342. <https://doi.org/10.1016/S0009-2614(01)00588-7>
162. Richardson N., Wesolowski S., Schaefer H.: J. Am. Chem. Soc. 2002, 124, 10163. <https://doi.org/10.1021/ja020009w>
163. Jensen P., Wesolowski S., Brinkmann N., Richardson N., Yamaguchi Y., Schaefer H., Bunker P.: J. Mol. Spectrosc. 2002, 211, 254. <https://doi.org/10.1006/jmsp.2001.8503>
164. Richardson N., Wesolowski S., Schaefer H.: J. Phys. Chem. B 2003, 107, 848. <https://doi.org/10.1021/jp022111l>
165. Kumar A., Knapp-Mohammady M., Mishra P., Suhai S.: J. Comput. Chem. 2004, 25, 1047. <https://doi.org/10.1002/jcc.20020>
166. Richardson N., Gu J., Wang S., Xie Y., Schaefer H.: J. Am. Chem. Soc. 2004, 126, 4404. <https://doi.org/10.1021/ja030487m>
167. Saettel N., Wiest O.: J. Am. Chem. Soc. 2001, 123, 2693. <https://doi.org/10.1021/ja005775m>