Collect. Czech. Chem. Commun.
2004, 69, 1681-1767
https://doi.org/10.1135/cccc20041681
A Review on Recent Developments in Syntheses of the Post-Secodine Indole Alkaloids. Part I: The Primary Alkaloid Types
Josef Hájíček
Zentiva/Research Institute of Pharmacy and Biochemistry, U kabelovny 130, CZ-10237 Prague 10, Czech Republic
References
1. Chem. Phys. Lett. 1978, 59, 38.
< W. H., Kim Malmin O., Nikolai W. L., Oba D.: https://doi.org/10.1016/0009-2614(78)85609-7>
2. Phys. Rev. A 2000, 62, 032511.
< A., Ciurylo J., Domyslawska J., Lisak D., Traviński R. S., Szudy J.: https://doi.org/10.1103/PhysRevA.62.032511>
3. Acta Phys. Pol. A 2001, 99, 243.
< R. S., Bielski A., Lisak D.: https://doi.org/10.12693/APhysPolA.99.243>
4. Eur. Phys. J. D 2001, 14, 27.
< A., Lisak D., Traviński R. S.: https://doi.org/10.1007/s100530170230>
5. Acta Phys. Pol. A 2000, 97, 1003.
< A., Ciurylo J., Domyslawska J., Lisak D., Traviński R. S., Wolnikowski J.: https://doi.org/10.12693/APhysPolA.97.1003>
6. Eur. Phys. J. D 2003, 23, 217.
A., Lisak D., Traviński R. S., Szudy J.:
7. J. Chem. Phys. 2007, 127-129, 054302.
< A. K., McCourt F. R. W., Dickinson A. S.: https://doi.org/10.1063/1.2753483>
8. Mol. Phys. 2008, 106-107, 75.
< T., Voronin A., Dham A. K., Stoker J. S. F., McCourt F. R. W.: https://doi.org/10.1080/00268970701832363>
9. J. Chem. Phys. 2004, 120, 9104.
< C. R., Cacheiro J. L., Fernandez B.: https://doi.org/10.1063/1.1695330>
10. J. Chem. Phys. 2003, 119, 909.
< K., Butler P. R., Ellis A. M., Wheeler M. D.: https://doi.org/10.1063/1.1579464>
11. J. Chem. Phys. 1993, 98, 7926.
< L., Casavecchia P., Volpi G. G., Wong C. C. K., McCourt F. R. W.: https://doi.org/10.1063/1.464547>
12. Chem. Phys. 1999, 248, 1.
< E.: https://doi.org/10.1016/S0301-0104(99)00247-5>
13. J. Chem. Phys. 1999, 110, 8525.
< B., Koch H., Makarewicz J.: https://doi.org/10.1063/1.478760>
14. J. Chem. Phys. 2004, 121, 10419.
< C. R., Cacheiro J. L., Fernandez B.: https://doi.org/10.1063/1.1809606>
15. Eur. Phys. J. D 2005, 33, 43.
< J., Lu Y. P., Chen X. R., Cheng Y.: https://doi.org/10.1140/epjd/e2005-00034-8>
16. J. Chem. Phys. 2006, 124, 034308.
< A. K., Meath W. J., Jechow J. W., McCourt F. R. W.: https://doi.org/10.1063/1.2159001>
17. J. Chem. Phys. 1992, 96, 6555.
< J. A., Gutowski M., Simons J.: https://doi.org/10.1063/1.462594>
18. J. Chem. Phys. 1994, 100, 8251.
< A., Castillo S.: https://doi.org/10.1063/1.466768>
19. Chem. Rev. 1994, 94, 1723.
< G., Szcęześniak M. M.: https://doi.org/10.1021/cr00031a001>
20. Jeziorski B., Moszyński R., Ratkiewicz A., Rybak S., Szalewicz K., Williams H. L.: SAPT: A Program for Many-Body Symmetry-Adapted Perturbation Theory Calculations of Intermolecular Interaction Energies. Clementi V. (Ed.) in: METECC-94 (Methods and Techniques in Computational Chemistry), Vol B. STEF, Cagliari 1993.
21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Gonzalez C., Pople J. A.: Gaussian 03, C.02. Gaussian, Inc., Pittsburgh (PA) 2003.
22. Mol. Phys. 1970, 19, 553.
< S. F., Bernardi F.: https://doi.org/10.1080/00268977000101561>
23. Mol. Phys. 1991, 74, 1245.
< W., Dolg M., Stoll H., Preuss H.: https://doi.org/10.1080/00268979100102941>
24. J. Chem. Phys. 1992, 96, 6769.
< R. A., Dunning Jr. T. H., Harrison R. J.: https://doi.org/10.1063/1.462569>
25. J. Chem. Phys. 1992, 97, 4989.
< F.-M., Pan Y.-K.: https://doi.org/10.1063/1.463852>
26. Theor. Chem. Acc. 2005, 114, 283.
< K. A., Puzzarini C.: https://doi.org/10.1007/s00214-005-0681-9>
27. Maitland G. C., Rigby M., Smith E. B., Wakeham W. A.: Intermolecular Forces. Clarrendon Press, Oxford 1981.
28. Hirschfelder J. O., Curtiss C. F., Bird R. B.: Molecular Theory of Gases and Liquids, Chap. 6. John Wiley & Sons, New York 1954.
29. Phys. Fluids 1964, 7, 897.
< J. A., Fock W., Smith F.: https://doi.org/10.1063/1.1711301>
30a. J. Phys. Chem. B 2003, 107, 5933.
< P., Ponder J. W.: https://doi.org/10.1021/jp027815+>
30b. J. Comput. Chem. 2002, 23, 1497.
< P., Ponder J. W.: https://doi.org/10.1002/jcc.10127>
30c. J. Phys. Chem. B 1998, 102, 9725.
< R. V., Hart R. K., Ponder J. W.: https://doi.org/10.1021/jp982255t>
30d. J. Mol. Biol. 1996, 264, 585.
< M. E., Ponder J. W., Cistola D. P.: https://doi.org/10.1006/jmbi.1996.0663>
30e. J. Comput. Chem. 1991, 12, 402.
< C. E., Ponder J. W., Richards F. M.: https://doi.org/10.1002/jcc.540120314>
30f. J. Comput. Chem. 1987, 8, 1016.
< J. W., Richards F. M.: https://doi.org/10.1002/jcc.540080710>
31. J. Comput. Phys. 1976, 20, 130.
< D.: https://doi.org/10.1016/0021-9991(76)90059-0>
32. J. Chem. Phys. 1984, 81, 3684.
< H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R.: https://doi.org/10.1063/1.448118>
33. Ilčin M., Lukeš V., Bučinský L., Laurinc V., Biskupič S.: Int. J. Quantum Chem. 2008, 108.
34. Physica 1940, 7, 381.
< J. L.: https://doi.org/10.1016/S0031-8914(40)90086-6>
35. J. Chem. Eng. Data 1991, 36, 265.
< P. J., Pang P., Preston S. R.: https://doi.org/10.1021/je00003a003>
36. Atmos. Environ. 1999, 33, 453.
< W. J.: https://doi.org/10.1016/S1352-2310(98)00204-0>
37. J. Eng. Phys. Thermophys. 1982, 42, 621.
< K. M., Remarchuk B. F., Guseva M. A.: https://doi.org/10.1007/BF00835092>