Collect. Czech. Chem. Commun.
2005, 70, 85-102
https://doi.org/10.1135/cccc20050085
A Regioselective Synthesis of Alkyl 2-(Guanin-9-yl)acetates as PNA Building Blocks from 7-(4-Nitrobenzyl)guanine Derivatives
Györgyi Ferenca, Péter Forgób, Zoltán Kelea and Lajos Kovácsa,*
a Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
b Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
References
1. F. P., Juhl-Christensen J.: Org. Prep. Proced. Int. 1993, 25, 375.
<https://doi.org/10.1080/00304949309457984>
2. D., Wani M. J., Kumar A.: J. Org. Chem. 1999, 64, 4665.
<https://doi.org/10.1021/jo982304y>
3. M. J., Zou R., Guo Z., Wnuk S. F.: J. Org. Chem. 1996, 61, 9207.
<https://doi.org/10.1021/jo9617023>
4. K. K., Hanna H. R.: Can. J. Chem. 1984, 62, 2702.
<https://doi.org/10.1139/v84-459>
5. J.: J. Chem. Soc., Perkin Trans. 2 1997, 649.
<https://doi.org/10.1039/a602021f>
6. J., Manikowski A.: Nucleosides Nucleotides 1999, 18, 1057.
<https://doi.org/10.1080/15257779908041644>
7. J.: Nucleosides Nucleotides 1996, 15, 771.
<https://doi.org/10.1080/07328319608002422>
8. J., Golankiewicz B.: Nucleosides Nucleotides 1989, 8, 529.
<https://doi.org/10.1080/07328318908054195>
9. J., Golankiewicz B.: Nucleosides Nucleotides 1987, 6, 385.
<https://doi.org/10.1080/07328318708056229>
10. J., Golankiewicz B.: Synthesis 1999, 625.
<https://doi.org/10.1055/s-1999-6058>
11. G. R., Kincey P. M., Spoors P. G.: Tetrahedron Lett. 2001, 42, 1781.
<https://doi.org/10.1016/S0040-4039(00)02326-1>
12. T., Matsuzawa T., Nishi S., Tsuji T.: Tetrahedron Lett. 1999, 40, 8845.
<https://doi.org/10.1016/S0040-4039(99)01858-4>
13. R., Robins M. J.: Can. J. Chem. 1987, 65, 1436.
<https://doi.org/10.1139/v87-243>
14. G., Knolle J., Langner D., O’Malley G., Uhlmann E.: Bioorg. Med. Chem. Lett. 1996, 6, 665.
<https://doi.org/10.1016/0960-894X(96)00082-0>
15. G., Rabie A., Wintersteiger R., Brugidou J.: J. Pept. Sci. 1998, 4, 266.
<https://doi.org/10.1002/(SICI)1099-1387(199806)4:4<266::AID-PSC143>3.0.CO;2-C>
16. S. A., Josey J. A., Cadilla R., Gaul M. D., Hassman C. F., Luzzio M. J., Pipe A. J., Reed K. L., Ricca D. J., Wiethe R. W., Noble S. A.: Tetrahedron 1995, 51, 6179.
<https://doi.org/10.1016/0040-4020(95)00286-H>
17. C., Boche G., Steinbrecher T., Scheer S.: J. Chem. Soc., Perkin Trans. 1 1997, 1887.
<https://doi.org/10.1039/a604559f>
18. B., Reese C. B., Song Q., Visintin C.: Tetrahedron 1999, 55, 5239.
<https://doi.org/10.1016/S0040-4020(99)00169-6>
19. G., Will D. W., Peyman A., Uhlmann E.: Tetrahedron 1997, 53, 14671.
<https://doi.org/10.1016/S0040-4020(97)01044-2>
20. A. W. H., Sidduri A., Garofalo L. M., Goodnow R. A.: Tetrahedron Lett. 2000, 41, 3303.
<https://doi.org/10.1016/S0040-4039(00)00423-8>
21. A., Trifonova A., Dinya Z., Chattopadhyaya J.: Tetrahedron Lett. 1999, 40, 7283.
<https://doi.org/10.1016/S0040-4039(99)01524-5>
22. K., Shiragami H.: Pure Appl. Chem. 1998, 70, 313.
<https://doi.org/10.1351/pac199870020313>
23. T., Yamashita K., Kojima M., Uchida Y., Katayama S., Torii T., Shiragami H., Izawa K.: Nucleosides Nucleotides 1999, 18, 653.
<https://doi.org/10.1080/15257779908041530>
24. Z., Kovács L., Kovács G., Schmél Z.: J. Chem. Soc., Perkin Trans. 1 2000, 19.
<https://doi.org/10.1039/a907832k>
25. P. K., Richmond G., Yeh F.: Synth. Commun. 1990, 20, 2459.
<https://doi.org/10.1080/00397919008053194>
26. B. M., O’Farrell C., Lewis N. J., Mitchell M. B.: Synthesis 1987, 53.
<https://doi.org/10.1055/s-1987-27841>
27. R., Conant R.: J. Chem. Soc., Chem. Commun. 1983, 465.
<https://doi.org/10.1039/c39830000465>
28. A. A., Kelleman A., Deaton-Rewolinski M. V.: Tetrahedron Lett. 2002, 43, 399.
<https://doi.org/10.1016/S0040-4039(01)02192-X>
29. Kocienski P.: Protecting Groups, p. 223. Georg Thieme Verlag, Stuttgart 1994.
30. R. M., Sabol M. R., Kim H. D., Kwast A.: J. Am. Chem. Soc. 1991, 113, 6621.
<https://doi.org/10.1021/ja00017a039>
31. M., Kuyl-Yeheskiely E., van Boom J. H.: Rec. Trav. Chim. Pays-Bas 1985, 104, 291.
<https://doi.org/10.1002/recl.19851041105>
32. Y., Yamashita H., Kobayashi S., Ohno M.: Chem. Pharm. Bull. 1986, 34, 2732.
<https://doi.org/10.1248/cpb.34.2732>
33. D. A., Gribble G. W.: Tetrahedron Lett. 1990, 31, 1081.
<https://doi.org/10.1016/S0040-4039(00)88731-6>
34. Kobe J., Jaksa S., Kalayanov G. (Kemijski Institut): Slovenia WO 00 06573.
35. T., Kumegawa M., Takesue Y., Nishimoto H., Ozaki S.: Chem. Lett. 1990, 339.
<https://doi.org/10.1246/cl.1990.339>
36. T., Kobayashi A., Nishiura M., Takahashi H., Usui T., Kamiyama I., Mochizuki N., Noritake K., Yokoyama Y., Murakami Y.: Chem. Pharm. Bull. 1991, 39, 1152.
<https://doi.org/10.1248/cpb.39.1152>
37. J. S., Reddy B. V. S.: Chem. Lett. 2000, 566.
<https://doi.org/10.1246/cl.2000.566>
38. G., Timár Z., Kupihár Z., Kele Z., Kovács L.: J. Chem. Soc., Perkin Trans. 1 2002, 1266.
<https://doi.org/10.1039/b201297a>
39. R. P., Devlin T., Habus I., Ho N.-H., Yu D., Agrawal S.: Tetrahedron Lett. 1996, 37, 1539.
<https://doi.org/10.1016/0040-4039(96)00066-4>
40. R. P., Dong Y., Habus I., Ho N. H., Johnson S., Devlin T., Jiang Z. W., Wen Z., Jin X., Agrawal S.: Tetrahedron 1997, 53, 2731.
<https://doi.org/10.1016/S0040-4020(97)00048-3>
41. J., Rodebaugh R., Fraser-Reid B.: Liebigs Ann. Chem. – Rec. 1997, 791.
<https://doi.org/10.1002/jlac.199719970503>
42. G. S., Gaffney B. L., Jones R. A.: J. Am. Chem. Soc. 1982, 104, 1316.
<https://doi.org/10.1021/ja00369a029>
43. E., Bargiotti A., Biancardi R., Pinciroli V., Ermoli A., Menichincheri M., Tibolla M.: Tetrahedron 2002, 58, 3361.
<https://doi.org/10.1016/S0040-4020(02)00297-1>
44. E., Wakselman M.: Synth. Commun. 1982, 12, 219.
<https://doi.org/10.1080/00397918208063681>
45. P., Dipple A., Lawley P. D.: J. Chem. Soc. C 1968, 2026.
<https://doi.org/10.1039/j39680002026>
46. R. C., Hudgins W. R., Dipple A.: J. Org. Chem. 1984, 49, 363.
<https://doi.org/10.1021/jo00176a028>
47. J. A., Reese C. B., Todd A.: J. Chem. Soc. 1962, 5281.
<https://doi.org/10.1039/jr9620005281>
48. M. P., Sykes B. M., Denny W. A., O’Connor C. J.: J. Chem. Soc., Perkin Trans. 1 1999, 2759.
<https://doi.org/10.1039/a904067f>
49. M. D., Caldwell C. G., Macsata R. W., Lyttle M. H.: Pept. Res. 1995, 8, 310.
50. B. M., Hay M. P., Bohinc-Herceg D., Helsby N. A., O’Connor C. J., Denny W. A.: J. Chem. Soc., Perkin Trans. 1 2000, 1601.
<https://doi.org/10.1039/b000135j>
51. J., Johansson N. G.: Tetrahedron 1986, 42, 6541.
<https://doi.org/10.1016/S0040-4020(01)88116-3>
52. G. R., Grinter T. J., Kincey P. M., Jarvest R. L.: Tetrahedron 1990, 46, 6903.
<https://doi.org/10.1016/S0040-4020(01)87878-9>
53. R., Brus J., Tousek J., Kovács L., Hocková D.: Magn. Reson. Chem. 2002, 40, 353.
<https://doi.org/10.1002/mrc.1020>
54. Ferenc G., Kele Z., Kovács L.: Rapid Commun. Mass Spectrom., submitted.
55. K. J., Brinkmann E., Baynes J. W.: J. Org. Chem. 1995, 60, 6246.
<https://doi.org/10.1021/jo00125a001>
56. M. L., Martin M. T., Guyot M.: Tetrahedron Lett. 1996, 37, 3457.
<https://doi.org/10.1016/0040-4039(96)00573-4>
57. J., de la Hoz A., Begtrup M.: Magn. Reson. Chem. 1998, 36, 296.
<https://doi.org/10.1002/(SICI)1097-458X(199804)36:4<296::AID-OMR244>3.0.CO;2-D>
58. J., Palomo-Coll A., Palomo-Coll A. L.: Synthesis 1981, 616.
<https://doi.org/10.1055/s-1981-29544>
59. U., Magnusson G.: Acta Chem. Scand., Ser. B 1993, 47, 826.
<https://doi.org/10.3891/acta.chem.scand.47-0826>
60. Izawa K., Shiragami H., Yamashita K. (Ajinomoto Co., Inc.): Japan EP 728757.
61. Pearson A. J., Roush W. R.: Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, p. 260. John Wiley and Sons, Chichester 1999.
62. Armarego W. L. F., Chai C. L. L.: Purification of Laboratory Chemicals, 5th ed. Elsevier, Amsterdam 2003.

