Collect. Czech. Chem. Commun.
2005, 70, 103-123
https://doi.org/10.1135/cccc20050103
Synthesis of Racemic 9-(6- and 2,6-Substituted 9H-Purin-9-yl)-5-oxatricyclo[4.2.1.03,7]nonane-3-methanols, Novel Conformationally Locked Carbocyclic Nucleosides
Hubert Hřebabecký*, Milena Masojídková and Antonín Holý
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
References
1. J. Antibiot. 1968, 21, 255.
< T., Yamamoto H., Shibata M., Muroi M., Kishi T., Mizuno K.: https://doi.org/10.7164/antibiotics.21.255>
2. J. Antibiot. 1981, 34, 359.
< S., Muto N., Tsujino M., Sudate Y., Hayashi M., Otani M.: https://doi.org/10.7164/antibiotics.34.359>
3. J. Med. Chem. 1990, 33, 17.
< R., Hua M.: https://doi.org/10.1021/jm00163a004>
4a. Daluge S. M.: U.S. 5,034,394; Chem. Abstr. 1992, 116, 106698.
4b. Antimicrob. Agents Chemother. 1997, 41, 1082.
< S. M., Good S. S., Faletto M. B., Miller W. H., Stclair M. H., Boone L. R., Tisdale M., Parry N. R., Reardon J. E., Dornsife R. E., Averett D. R., Krenitsky T. A.: https://doi.org/10.1128/AAC.41.5.1082>
5. J. Med. Chem. 1992, 35, 1882.
< N., Nomura M., Sato H., Kaneko C., Yusa K., Tsuruo T.: https://doi.org/10.1021/jm00088a026>
6a. J. Med. Chem. 1991, 34, 1415.
< G. S., Braitman A., Cianci C. W., Clark J. M., Field A. K., Hagen M. E., Hockstein D. R., Malley M. F., Mitt T., Slusarchyk W. A., Sundeen J. E., Terry B. J., Tuomari A. V., Weaver E. R., Young M. G., Zahler R.: https://doi.org/10.1021/jm00108a026>
6b. Antimicrob. Agents Chemother. 1991, 35, 1464.
< A., Swerdel M. R., Olsen S. J., Tuomari A. V., Lynch J. S., Blue E., Michalik T., Field A. K., Bonner D. P., Clark J. M.: https://doi.org/10.1128/AAC.35.7.1464>
7. Nucleosides Nucleotides 1996, 15, 235.
< M. A., Ford H., Jr., Marquez V. E.: https://doi.org/10.1080/07328319608002382>
8. J. Med. Chem. 1996, 39, 3739.
< V. E., Siddiqui M. A., Ezzitouni A., Russ P., Wang J., Wagner R. W., Matheuci M. D.: https://doi.org/10.1021/jm960306+>
9. J. Med. Chem. 2000, 43, 736.
< J., Froeyen M., Hendrix C., Andrei G., Snoeck R., De Clercq E., Herdewijn P.: https://doi.org/10.1021/jm991171l>
10. Org. Lett. 2003, 5, 1665.
< H. S., Jacobson K. A.: https://doi.org/10.1021/ol034326z>
11. Tetrahedron Lett. 1999, 40, 1907.
< J., Fukuzaki T., Murai A.: https://doi.org/10.1016/S0040-4039(99)00040-4>
12. J. Org. Chem. 1983, 48, 4155.
< D. B., Martin J. C.: https://doi.org/10.1021/jo00170a070>
13a. Tetrahedron Lett. 1979, 20, 395.
E. J., Schmidt G.:
13b. Tetrahedron Lett. 1985, 26, 1699.
< S., Georgoulis C., Stevens C. L., Vijayakumaran K.: https://doi.org/10.1016/S0040-4039(00)98314-X>
14. Kalinowski H. O., Berger S., Braun S.: 13C-NMR Spektroskopie, p. 258. Georg Thieme, Stuttgart, New York 1984.
15a. J. Org. Chem. 1959, 24, 1314.
< S. M., Ross L. O., Robins R. K.: https://doi.org/10.1021/jo01091a039>
15b. Bioorg. Med. Chem. 2002, 10, 2325.
< R. S., Vince R.: https://doi.org/10.1016/S0968-0896(02)00063-9>
15c. Collect. Czech. Chem. Commun. 2004, 69, 435.
< H., Masojídková M., Holý A.: https://doi.org/10.1135/cccc20040435>
16. J. Med. Chem. 1984, 27, 1416.
< Y. F., O’Dell C. A., Shannon W. M., Arnett G.: https://doi.org/10.1021/jm00377a007>
17. Tetrahedron Lett. 2000, 41, 6559.
< Q., Brown B. S., Erion M. D.: https://doi.org/10.1016/S0040-4039(00)01074-1>
18. Jackman L. M., Sternhell S.: Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, pp. 289, 334. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig 1972.
19. Kalinowski H. O., Berger S., Braun S.: 13C-NMR Spektroskopie, p. 252. Georg Thieme, Stuttgart, New York 1984.
20. Votruba I.: Unpublished results.
21. Balzarini J.: Unpublished results.