Collect. Czech. Chem. Commun. 2005, 70, 1493-1576
https://doi.org/10.1135/cccc20051493

Exploring Dynamics and Stereochemistry in Mechanically-Interlocked Compounds

Scott A. Vignon and J. Fraser Stoddart*

California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1569, U.S.A.

References

1. Wasserman E.: J. Am. Chem. Soc. 1960, 82, 4433. <https://doi.org/10.1021/ja01501a082>
2. Frisch H. L., Wasserman E.: J. Am. Chem. Soc. 1961, 83, 3789. <https://doi.org/10.1021/ja01479a015>
3a. Amabilino D. B., Ashton P. R., Reder A. S., Spencer N., Stoddart J. F.: Angew. Chem., Int. Ed. Engl. 1994, 33, 1286. <https://doi.org/10.1002/anie.199412861>
3b. Amabilino D. B., Ashton P. R., Balzani V., Boyd S. E., Credi A., Lee J. Y., Menzer S., Stoddart J. F., Venturi M., Williams D. J.: J. Am. Chem. Soc. 1998, 120, 4295. <https://doi.org/10.1021/ja9720873>
3c. Wang L., Vysotsky M. O., Bogdan A., Bolte M., Böhmer V.: Science 2004, 304, 1312. <https://doi.org/10.1126/science.1096688>
4a. Walba D. M.: Tetrahedron 1985, 41, 3161. <https://doi.org/10.1016/S0040-4020(01)96671-2>
4b. Dietrich-Buchecker C. O., Sauvage J.-P.: Angew. Chem., Int. Ed. Engl. 1989, 28, 189. <https://doi.org/10.1002/anie.198901891>
4c. Dietrich-Buchecker C., Rapenne G., Sauvage J.-P., Cian A. D., Fischer J.: Chem. Eur. J. 1999, 5, 1432. <https://doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1432::AID-CHEM1432>3.0.CO;2-C>
4d. Vögtle F., Hünten A., Vogel E., Buschbeck S., Safarowsky O., Recker J., Parham A.-H., Knott M., Müller W. M., Müller U., Okamoto Y., Kudota T., Lindner W., Francotte E., Grimme S.: Angew. Chem., Int. Ed. 2001, 40, 2468. <https://doi.org/10.1002/1521-3773(20010702)40:13<2468::AID-ANIE2468>3.0.CO;2-F>
5. Chichak K. S., Cantrill S. J., Pease A. R., Chiu S.-H., Cave G. W. V., Atwood J. L., Stoddart J. F.: Science 2004, 304, 1308. <https://doi.org/10.1126/science.1096914>
6. Schill G., Lüttringhaus A.: Angew. Chem., Int. Ed. Engl. 1964, 3, 546. <https://doi.org/10.1002/anie.196405461>
7a. Templated Organic Synthesis (F. Diederich and P. J. Stang, Eds). Wiley-VCH, Weinheim 1999.
7b. Molecular Catenanes, Rotaxanes and Knots (J.-P. Sauvage and C. O. Dietrich-Buchecker, Eds). Wiley-VCH, Weinheim 1999.
7c. Self-Assembly in Supramolecular Systems: Lindoy L. F., Atkinson I. M. in: Monographs in Supramolecular Chemistry (J. F. Stoddart, Ed.). Royal Society of Chemistry, Cambridge 2000.
7d. Philp D., Stoddart J. F.: Synlett 1991, 445. <https://doi.org/10.1055/s-1991-20759>
7e. Chambron J.-C., Dietrich-Buchecker C. O., Sauvage J.-P.: Top. Curr. Chem. 1993, 165, 131. <https://doi.org/10.1007/BFb0111283>
7f. Gibson H. W., Maraud H.: Adv. Mater. 1993, 5, 11. <https://doi.org/10.1002/adma.19930050103>
7g. Amabilino D. B., Stoddart J. F.: Chem. Rev. 1995, 95, 2725. <https://doi.org/10.1021/cr00040a005>
7h. Fujita M., Ogura K.: Coord. Chem. Rev. 1996, 148, 249. <https://doi.org/10.1016/0010-8545(95)01212-5>
7i. Glink P. T., Schiavo C., Stoddart J. F., Williams D. J.: Chem. Commun. 1996, 1483. <https://doi.org/10.1039/cc9960001483>
7j. Jäger R., Vögtle F.: Angew. Chem., Int. Ed. Engl. 1997, 36, 930. <https://doi.org/10.1002/anie.199709301>
7k. Breault G. A., Hunter C. A., Mayers P. C.: Tetrahedron 1999, 55, 5265. <https://doi.org/10.1016/S0040-4020(99)00282-3>
7l. Hubin T. J., Busch D. H.: Coord. Chem. Rev. 2000, 200, 5. <https://doi.org/10.1016/S0010-8545(99)00242-8>
7m. Raehm L., Hamilton D. G., Sanders J. K. M.: Synlett 2002, 1743.
7n. Ancó F., Badjic J. D., Cantvill S. J., Flood A. H., Leung K. C. F., Liu Y., Stoddart J. F.: Top. Curr. Chem. 2005, 249, 203.
8a. Philp D., Stoddart J. F.: Angew. Chem., Int. Ed. Engl. 1996, 35, 1154. <https://doi.org/10.1002/anie.199611541>
8b. Stoddart J. F., Tseng H.-R.: Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4797. <https://doi.org/10.1073/pnas.052708999>
9. Raymo F. M., Stoddart J. F.: Chem. Rev. 1999, 99, 1643. <https://doi.org/10.1021/cr970081q>
10a. Fyfe M. C. T., Stoddart J. F.: Acc. Chem. Res. 1997, 30, 393. <https://doi.org/10.1021/ar950199y>
10b. Fyfe M. C. T., Glink P. T., Menzer S., Stoddart J. F., White A. J. P., Williams D. J.: Angew. Chem., Int. Ed. Engl. 1997, 36, 2068. <https://doi.org/10.1002/anie.199720681>
11a. Balzani V., Gómez-López M., Stoddart J. F.: Acc. Chem. Res. 1998, 31, 405. <https://doi.org/10.1021/ar970340y>
11b. Stoddart J. F.: Acc. Chem. Res. 2001, 34, 410. <https://doi.org/10.1021/ar010084w>
11c. Pease A. R., Jeppesen J. O., Stoddart J. F., Luo Y., Collier C. P., Heath J. R.: Acc. Chem. Res. 2001, 34, 433. <https://doi.org/10.1021/ar000178q>
11d. Flood A. H., Ramirez R. J. A., Deng W.-Q., Muller R. P., Goddard III W. A., Stoddart J. F.: Aust. J. Chem. 2004, 57, 301. <https://doi.org/10.1071/CH03307>
11e. Flood A. H., Stoddart J. F., Steuerman D. W., Heath J. R.: Science 2004, 306, 2055. <https://doi.org/10.1126/science.1106195>
12. Circumrotation is commonly used to describe the rotation of one ring in a [2]catenane through the other, while pirouetting pertains to the spinning of one ring around the outside of the other. Because the difference between these two processes is fundamentally just the frame of reference, we will consider them the same for the purposes of this Review.
13. Johnston A. G., Leigh D. A., Nezhat L., Smart J. P., Deegan M. D.: Angew. Chem. Int. Ed. Engl. 1995, 34, 1212. <https://doi.org/10.1002/anie.199512121>
14. Calculated from Fig. 3 in ref.13 by using Δν = 108 Hz and the equation kc = (πΔν)/__MATH__ to obtain the rate constant at coalescence, kc, of 240 s–1 at 377 K. These values were then substituted into the Eyring equation, ΔGc‡ = –RT ln (kch/kBT), to determine ΔGc(377 K) = 18.1 kcal mol–1.
15. Leigh D. A., Moody K., Smart J. P., Watson K. J., Slawin A. M. Z.: Angew. Chem., Int. Ed. Engl. 1996, 35, 306. <https://doi.org/10.1002/anie.199603061>
16. Deleuze M. S., Leigh D. A., Zerbetto F.: J. Am. Chem. Soc. 1999, 121, 2364. <https://doi.org/10.1021/ja9815273>
17. Ashton P. R., Preece J. A., Stoddart J. F., Tolley M. S., White A. J. P., Williams D. J.: Synthesis 1994, 1344. <https://doi.org/10.1055/s-1994-25692>
18. See Section 2 for a detailed investigation into the dynamic stereochemistry of donor– acceptor [2]catenanes that arises partially as a result of this ring rocking process.
19. The term “molecular shuttle” was first used in 1991. See: Anelli P.-L., Spencer N., Stoddart J. F.: J. Am. Chem. Soc. 1991, 113, 5131. <https://doi.org/10.1021/ja00013a096>
20. Lane A. S., Leigh D. A., Murphy A.: J. Am. Chem. Soc. 1997, 119, 11092. <https://doi.org/10.1021/ja971224t>
21. Leigh D. A., Troisi A., Zerbetto F.: Angew. Chem., Int. Ed. 2000, 39, 350. <https://doi.org/10.1002/(SICI)1521-3773(20000117)39:2<350::AID-ANIE350>3.0.CO;2-D>
22a. Ashton P. R., Bissell R. A., Spencer N., Stoddart J. F., Tolley M. S.: Synlett 1992, 923. <https://doi.org/10.1055/s-1992-21542>
22b. Córdova E., Bissell R. A., Spencer N., Ashton P. R., Kaifer A. E., Stoddart J. F.: J. Org. Chem. 1993, 58, 6550. <https://doi.org/10.1021/jo00076a008>
22c. Devonport W., Blower M. A., Bryce M. R., Goldenberg L. M.: J. Org. Chem. 1997, 62, 885. <https://doi.org/10.1021/jo960951o>
22d. Ashton P. R., Ballardini R., Balzani V., Gómez-López M., Lawrence S. E., Martínez-Díaz M.-V., Montalti M., Piersanti A., Prodi L., Stoddart J. F., Williams D. J.: J. Am. Chem. Soc. 1997, 119, 10641. <https://doi.org/10.1021/ja9715760>
22e. Elizarov A. M., Chiu H.-S., Stoddart J. F.: J. Org. Chem. 2002, 67, 9175. <https://doi.org/10.1021/jo020373d>
23a. Bissell R. A., Córdova E., Kaifer A. E., Stoddart J. F.: Nature 1994, 369, 133. <https://doi.org/10.1038/369133a0>
23b. Raehm L., Kern J.-M., Sauvage J.-P.: Chem. Eur. J. 1999, 5, 3310. <https://doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3310::AID-CHEM3310>3.0.CO;2-R>
23c. Ballardini R., Balzani V., Dehaen W., Dell’Erba A. E., Raymo F. M., Stoddart J. F., Venturi M.: Eur. J. Org. Chem. 2000, 591. <https://doi.org/10.1002/(SICI)1099-0690(200002)2000:4<591::AID-EJOC591>3.0.CO;2-I>
23d. Collin J.-P., Kern J.-M., Raehm L., Sauvage J.-P. in: Molecular Switches (B. L. Feringa, Ed.), p. 249. Wiley-VCH, Weinheim 2000.
23e. Colasson B. X., Dietrich-Buchecker C., Jimenez-Molero M. C., Sauvage J.-P.: J. Phys. Org. Chem. 2002, 15, 476. <https://doi.org/10.1002/poc.481>
24a. Ashton P. R., Ballardini R., Balzani V., Credi A., Dress R., Ishow E., Kocian O., Preece J. A., Spencer N., Stoddart J. F., Venturi M., Wenger S.: Chem. Eur. J. 2000, 6, 3558. <https://doi.org/10.1002/1521-3765(20001002)6:19<3558::AID-CHEM3558>3.0.CO;2-M>
24b. Brouwer A. M., Frochot C., Gatti F. G., Leigh D. A., Mottier L., Paolucci F., Roffia S., Wurpel G. W. H.: Science 2001, 291, 2124. <https://doi.org/10.1126/science.1057886>
24c. Gatti F. G., Len S., Wong J. K. Y., Bottari G., Altieri A., Morales M. A. F., Teat S. J., Frochot C., Leigh D. A., Brouwer A. M., Zerbetto F.: Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10. <https://doi.org/10.1073/pnas.0134757100>
25. Bermudez V., Capron N., Gase T., Gatti F. G., Kajzar F., Leigh D. A., Zerbetto F., Zhang S.: Nature 2000, 406, 608. <https://doi.org/10.1038/35020531>
26. Livoreil A., Sauvage J.-P., Armaroli N., Balzani V., Flamigni L., Ventura B.: J. Am. Chem. Soc. 1997, 119, 12114. <https://doi.org/10.1021/ja9720826>
27. Metal-containing catenanes have been dubbed catenates by Sauvage and co-workers. See: Livoreil A., Dietrich-Buchecker C. O., Sauvage J. P.: J. Am. Chem. Soc. 1994, 116, 9399. <https://doi.org/10.1021/ja00099a095>
28. Altieri A., Bottari G., Dehez F., Leigh D. A., Wong J. K. Y., Zerbetto F.: Angew. Chem., Int. Ed. 2003, 42, 2296. <https://doi.org/10.1002/anie.200250745>
29. Ashton P. R., Ballardini R., Balzani V., Baxter I., Credi A., Fyfe M. C. T., Gandolfi M. T., Gómez-López M., Martínez-Díaz M.-V., Piersanti A., Spencer N., Stoddart J. F., Venturi M., White A. J. P., Williams D. J.: J. Am. Chem. Soc. 1998, 120, 11932. <https://doi.org/10.1021/ja982167m>
30. Poleschak I., Kern J.-M., Sauvage J.-P.: Chem. Commun. 2004, 474. <https://doi.org/10.1039/b315080a>
31a. Mitchell D. K., Sauvage J.-P.: Angew. Chem., Int. Ed. Engl. 1988, 27, 930. <https://doi.org/10.1002/anie.198809301>
31b. Chambron J.-C., Mitchell D. K., Sauvage J.-P.: J. Am. Chem. Soc. 1992, 114, 4625. <https://doi.org/10.1021/ja00038a027>
31c. Reuter C., Pawlitzki G., Wörsdörfer U., Plevoets M., Mohry A., Kubota T., Okamoto Y., Vögtle F.: Eur. J. Org. Chem. 2000, 3059. <https://doi.org/10.1002/1099-0690(200009)2000:17<3059::AID-EJOC3059>3.0.CO;2-T>
32a. Yamamoto C., Okamoto Y., Schmidt T., Jäger R., Vögtle F.: J. Am. Chem. Soc. 1997, 119, 10547. <https://doi.org/10.1021/ja971764q>
32b. Reuter C., Mohry A., Sobanski A., Vögtle F.: Chem. Eur. J. 2000, 6, 1674. <https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1674::AID-CHEM1674>3.3.CO;2-9>
33. Koizumi M., Dietrich-Buchecker C., Sauvage J.-P.: Eur. J. Org. Chem. 2004, 770. <https://doi.org/10.1002/ejoc.200300572>
34. Tachibana Y., Kihara N., Takata T.: J. Am. Chem. Soc. 2004, 126, 3438. <https://doi.org/10.1021/ja039461l>
35. Bottari G., Leigh D. A., Pérez E. M.: J. Am. Chem. Soc. 2003, 125, 13360. <https://doi.org/10.1021/ja036665t>
36. Tseng H.-R., Vignon S. A., Celestre P. C., Stoddart J. F., White A. J. P., Williams D. J.: Chem. Eur. J. 2003, 9, 543. <https://doi.org/10.1002/chem.200390057>
37a. Mann B. E.: J. Magn. Reson. 1976, 21, 17.
37b. Mann B. E.: J. Magn. Reson. 1977, 25, 91.
37c. Mann B. E.: Prog. Nucl. Magn. Spectrosc. 1977, 11, 95. <https://doi.org/10.1016/0079-6565(77)80004-6>
37d. Perrin C. L., Johnston E. R.: J. Magn. Reson. 1979, 33, 619.
37e. Perrin C. L., Johnston E. R.: J. Am. Chem. Soc. 1979, 101, 4753. <https://doi.org/10.1021/ja00510a065>
38. Binsch G., Kessler H.: Angew. Chem., Int. Ed. Engl. 1980, 19, 411. <https://doi.org/10.1002/anie.198004113>
39. The barrier for racemization in 2,2′-dimethyl-6,6′–diethylbiphenyl was reported to be 56 kcal mol–1. See: Zimmerman H. E., Crumrine D. S.: J. Am. Chem. Soc. 1972, 94, 498. <https://doi.org/10.1021/ja00757a030>
40. Eliel E. L., Wilen S. H.: Stereochemistry of Organic Compounds, Chap. 14. Wiley, New York 1994.
41. This chirality arises from the break in symmetry caused by the non-90° angle between the two rings. If the two rings were exactly perpendicular to one another, the geometry would be achiral.
42. Computational investigations were carried out using Macromodel 5.0. See: Mohamadi F., Richards N. G. J., Liskamp R., Lipton M., Caulfield C., Chang G., Hendrickson T., Still W. C.: J. Comput. Chem.. 1990, 11, 440. The starting geometries were constructed from the X-ray crystal structure and then subjected to Monte Carlo conformational searches of 400 conformers. Energy minimization followed using the AMBER* force field as it is implemented in Macromodel 5.0 and a GB/SA CHCl3 solvent model. <https://doi.org/10.1002/jcc.540110405>
43. The rate at which two NMR signals exchanging by some dynamic process will coalesce is given by the equation kex = (πΔυ)/__MATH__, where Δυ is the limiting peak separation in Hz at low temperature. Thus, a larger separation between the two signals requires a higher rate constant before coalescence is observed. Although the ring rocking process is a relatively rapid one, the large chemical shift difference between the proton environments for the inside HQ unit that it exchanges between allows it to be observed.
44. Anelli P.-L., Ashton P. R., Ballardini R., Balzani V., Delgado M., Gandolfi M. T., Goodnow T. T., Kaifer A. E., Philp D., Pietraszkiewicz M., Prodi L., Reddington M. V., Slawin A. M. Z., Spencer N., Stoddart J. F., Vicent C., Williams D. J.: J. Am. Chem. Soc. 1992, 114, 193. <https://doi.org/10.1021/ja00027a027>
45. Ashton P. R., Goodnow T. T., Kaifer A. E., Reddington M. V., Slawin A. M. Z., Spencer N., Stoddart J. F., Vicent C., Williams D. J.: Angew. Chem., Int. Ed. Engl. 1989, 28, 1396. <https://doi.org/10.1002/anie.198913961>
46a. Aviram A., Ratner M. A.: Chem. Phys. Lett. 1974, 29, 277. <https://doi.org/10.1016/0009-2614(74)85031-1>
46b. Park J., Pasupathy A. N., Goldsmith J. I., Chang C., Yaish Y., Petta J. R., Rinkoski M., Sethna J. P., Abruña H. D., McEuen P. L., Ralph D. C.: Nature 2002, 417, 722. <https://doi.org/10.1038/nature00791>
46c. Liang W., Shores M. P., Brockrath M., Long J. R., Park H.: Nature 2002, 417, 725. <https://doi.org/10.1038/nature00790>
46d. Metzger R. M., Baldwin J. W., Shumate W. J., Peterson I. R., Mani P., Mankey C. J., Morris T., Szulczewski G., Bosi S., Prato M., Comito A., Rubin Y.: J. Phys. Chem. B 2003, 107, 1021. <https://doi.org/10.1021/jp022101k>
46e. Heath J. R., Ratner M. A.: Phys. Today 2003, 56, 43. <https://doi.org/10.1063/1.1583533>
46f. Wassel R. A., Gorman C. B.: Angew. Chem., Int. Ed. 2004, 43, 5120. <https://doi.org/10.1002/anie.200301735>
47a. Collier C. P., Mattersteig G., Wong E. W., Luo Y., Beverly K., Sampaio J., Raymo F. M., Stoddart J. F., Heath J. R.: Science 2000, 289, 1172. <https://doi.org/10.1126/science.289.5482.1172>
47b. Luo Y., Collier C. P., Jeppesen J. O., Nielsen K. A., DeIonno E., Ho G., Perkins J., Tseng H.-R., Yamamoto T., Stoddart J. F., Heath J. R.: ChemPhysChem 2002, 3, 519. <https://doi.org/10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2>
47c. Diehl M. R., Steuerman D. W., Tseng H.-R., Vignon S. A., Star A., Celestre P. C., Stoddart J. F., Heath J. R.: ChemPhysChem 2003, 4, 1335. <https://doi.org/10.1002/cphc.200300871>
47d. Mendes P. M., Flood A. H., Stoddart J. F.: Appl. Phys. A 2005, 80, 1197. <https://doi.org/10.1007/s00339-004-3172-2>
48a. Jang Y. H., Hwang S., Kim Y.-H., Jang S. S., Goddard W. A.: J. Am. Chem. Soc. 2004, 126, 12636. <https://doi.org/10.1021/ja0385437>
48b. Deng W.-Q., Muller R. P., Goddard W. A.: J. Am. Chem. Soc. 2004, 126, 13562. <https://doi.org/10.1021/ja036498x>
48c. Kim Y.-H., Jang S. S., Jang Y. H., Goddard W. A.: Phys. Rev. Lett. 2005, 94, 156801. <https://doi.org/10.1103/PhysRevLett.94.156801>
49. This process can be accelerated by two-electron reduction of the catenane, which turns off the noncovalent bonding interactions between the two rings, allowing rapid equilibration. It is believed that this mechanism also operates in the device and explains the ability to switch from the high to the low conductivity state by applying a bias opposite to that of the initial switching bias.
50a. Asakawa M., Ashton P. R., Balzani V., Credi A., Hamers C., Mattersteig G., Montalti M., Shipway A. N., Spencer N., Stoddart J. F., Tolley M. S., Venturi M., White A. J. P., Williams D. J.: Angew. Chem., Int. Ed. Engl. 1998, 37, 333. <https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<333::AID-ANIE333>3.0.CO;2-P>
50b. Balzani V., Credi A., Mattersteig G., Matthews O. A., Raymo F. M., Stoddart J. F., Venturi M., White A. J. P., Williams D. J.: J. Org. Chem. 2000, 65, 1924. <https://doi.org/10.1021/jo991781t>
51a. Tseng H.-R., Wu D., Fang N. X., Zhang X., Stoddart J. F.: ChemPhysChem 2004, 5, 111. <https://doi.org/10.1002/cphc.200300992>
51b. Flood A. H., Peters A. J., Vignon S. A., Steuerman D. W., Tseng H.-R., Kang S., Heath J. R., Stoddart J. F.: Chem. Eur. J. 2004, 10, 6558. <https://doi.org/10.1002/chem.200401052>
51c. Steuerman D. W., Tseng H.-R., Peters A. J., Flood A. H., Jeppesen J. O., Nielsen K. A., Stoddart J. F., Heath J. R.: Angew. Chem., Int. Ed. 2004, 43, 6486. <https://doi.org/10.1002/anie.200461723>
52. Kang S., Vignon S. A., Tseng H.-R., Stoddart J. F.: Chem. Eur. J. 2004, 10, 2555. <https://doi.org/10.1002/chem.200305725>
53. Mislow K., Raban M.: Top. Stereochem. 1967, 1, 1. <https://doi.org/10.1002/9780470147108.ch1>
54. Ashton P. R., Brown C. L., Chrystal E. J. T., Goodnow T. T., Kaifer A. E., Parry K. P., Philp D., Slawin A. M. Z., Spencer N., Stoddart J. F., Williams D. J.: J. Chem. Soc., Chem. Commun. 1991, 634. <https://doi.org/10.1039/c39910000634>
55a. Ashton P. R., Philp D., Spencer N., Stoddart J. F., Williams D. J.: J. Chem. Soc., Chem. Commun. 1994, 181. <https://doi.org/10.1039/c39940000181>
55b. Amabilino D. B., Anelli P.-L., Ashton P. R., Brown G. R., Córdova E., Godínez L. A., Hayes W., Kaifer A. E., Philp D., Slawin A. M. Z., Spencer N., Stoddart J. F., Tolley M. S., Williams D. J.: J. Am. Chem. Soc. 1995, 117, 11142. <https://doi.org/10.1021/ja00109a011>
56a. Sutherland I. O.: Annu. Rep. NMR Spectrosc. 1971, 4, 71. <https://doi.org/10.1016/S0066-4103(08)60345-2>
56b. Dynamic NMR Spectroscopy (J. Sandstrom, Ed.), Chap. 6. Academic Press, New York 1982.
57. The rate constant was determined using the equation kc = (π*Δυex)/__MATH__ and then inserted into the Eyring equation, ΔG‡ = –RTc ln (kch/kBTc), where R is the gas constant, h is Planck constant, and kB is Boltzmann constant.
58. Castro R., Nixon K. R., Evenseck J. D., Kaifer A. E.: J. Org. Chem. 1996, 61, 7298. <https://doi.org/10.1021/jo9610321>
59. Ashton P. R., Boyd S. E., Brindle A., Langford S. J., Menzer S., Pérez-Garcia L., Preece J. A., Raymo F. M., Spencer N., Stoddart J. F., White A. J. P., Williams D. J.: New J. Chem. 1999, 23, 587. <https://doi.org/10.1039/a809433k>
60a. Day J. B., Vuissoz P.-A., Oldfield E., Wieckowski A., Ansermet J.-P.: J. Am. Chem. Soc. 1996, 118, 13046. <https://doi.org/10.1021/ja962490u>
60b. Tong Y., Rice C., Wieckowski A., Oldfield E.: J. Am. Chem. Soc. 2000, 122, 1123. <https://doi.org/10.1021/ja9922274>
60c. Prenzler P. D., Bramley R., Downing S. R., Heath G. A.: Electrochem. Commun. 2000, 2, 516.
60d. Webster R. D.: Anal. Chem. 2004, 76, 1603. <https://doi.org/10.1021/ac0351724>
61. Coffen D. L., Chambers J. Q., Williams D. R., Garrett P. E., Canfield N. D.: J. Am. Chem. Soc. 1971, 93, 2258. <https://doi.org/10.1021/ja00738a028>
62a. Steckhan E.: Top. Curr. Chem. 1987, 142, 1. <https://doi.org/10.1007/3-540-17871-6_11>
62b. Connelly N. G., Geiger W. E.: Chem. Rev. 1996, 96, 877. <https://doi.org/10.1021/cr940053x>
63. Vignon S. A.: Ph.D. Thesis. University of California, Los Angeles 2005.
64. It was not possible to assign the two signals for the TTF unit to the specific isomer, cis or trans, that gives rise to them.
65a. Ratner M. A., Sabin J. R., Ball E. E.: Chem. Phys. Lett. 1974, 28, 393. <https://doi.org/10.1016/0009-2614(74)80374-X>
65b. Ashton P. R., Balzani V., Becher J., Credi A., Fyfe M. C. T., Mattersteig G., Menzer S., Nielsen M. B., Raymo F. M., Stoddart J. F., Venturi M., Williams D. J.: J. Am. Chem. Soc. 1999, 121, 3951. <https://doi.org/10.1021/ja984341c>
66. Tseng H.-R., Vignon S. A., Stoddart J. F.: Angew. Chem., Int. Ed. 2003, 42, 1491. <https://doi.org/10.1002/anie.200250453>
67. Tseng H.-R., Vignon S. A., Celestre P. C., Perkins J., Jeppesen J. O., Di Fabio A., Ballardini R., Gandolfi M. T., Venturi M., Balzani V., Stoddart J. F.: Chem. Eur. J. 2004, 10, 155. <https://doi.org/10.1002/chem.200305204>
68. Liu Y., Flood A. H., Bonvallet P. A., Vignon S. A., Northrop B. H., Tseng H.-R., Jeppesen J. O., Huang T. J., Brough B., Baller M., Magonov S., Solares S. D., Goddard W. A., Ho C.-M., Stoddart J. F.: J. Am. Chem. Soc. 2005, 127, 9745. <https://doi.org/10.1021/ja051088p>
69. Technically there are four possible isomers, of which three are chemically distinct, namely cis-cis, cis-trans and trans-trans. However, only four signals, instead of the possible eight are observed, indicating that the TTF units are too far apart to influence the magnetic environment of each other and the conformational changes induced by the isomerism only affect the local protons.
70. The observation of the chemical switching of a bistable TTF/DNP-containing [2]catenane by UV/VIS spectroscopy has been reported previously. An initial communication also reported erroneously the observation of oxidative switching by 1H NMR spectroscopy using o-chloranil. Later evidence, however, indicated that the switching in this case occurs as a result of adduct formation between the TTF unit and o-chloranil. See: ref.9 and Shen C. K.-F., Duong H. M., Sonmez G., Wudl F.: J. Am. Chem. Soc. 2003, 125, 16206. <https://doi.org/10.1021/ja037621n>
71a. Brown C. L., Jonas U., Preece J. A., Ringsdorf H., Seitz M., Stoddart J. F.: Langmuir 2000 16, 1924. <https://doi.org/10.1021/la990791m>
71b. Asakawa M., Higuchi M., Mattersteig G., Nakamura T., Pease A. R., Raymo F. M., Shimizu T., Stoddart J. F.: Adv. Mater. 2000, 12, 1099. <https://doi.org/10.1002/1521-4095(200008)12:15<1099::AID-ADMA1099>3.0.CO;2-2>
71c. Collier C. P., Jeppesen J. O., Luo Y., Perkins J., Wong E. W., Heath J. R., Stoddart J. F.: J. Am. Chem. Soc. 2001, 123, 12632. <https://doi.org/10.1021/ja0114456>
71d. Norgaard K., Jeppesen J. O., Laursen B. W., Simonsen J. B., Weygand M. J., Kjaer K., Stoddart J. F., Bjornholm T.: J. Phys. Chem. B 2005, 109, 1063. <https://doi.org/10.1021/jp0448494>
72a. Jang S. S., Jang Y. H., Kim Y.-H., Goddard W. A., Flood A. H., Laursen B. W., Tseng H.-R., Stoddart J. F., Jeppesen J. O., Choi J. W., Steuerman D. W., DeIonno E., Heath J. R.: J. Am. Chem. Soc. 2005, 127, 1563. <https://doi.org/10.1021/ja044530x>
72b. Jang Y. H., Jang S. A., Goddard W. A.: J. Am. Chem. Soc. 2005, 127, 4959. <https://doi.org/10.1021/ja044762w>
73. Laursen B. W., Nygaard S., Jeppesen J. O., Stoddart J. F.: Org. Lett. 2004, 6, 4167. <https://doi.org/10.1021/ol048518l>
74. Although they will not be discussed here, zwitterionic rotaxanes and catenanes represent another interesting alternative to systems that possess a net charge.
75a. Hamilton D. G., Davies J. E., Prodi L., Sanders J. K. M.: Chem. Eur. J. 1998, 4, 608. <https://doi.org/10.1002/(SICI)1521-3765(19980416)4:4<608::AID-CHEM608>3.0.CO;2-C>
75b. Zhang Q., Hamilton D. G., Feeder N., Teat S. J., Goodman J. M., Sanders J. K. M.: New J. Chem. 1999, 23, 897. <https://doi.org/10.1039/a904174e>
75c. Hamilton D. G., Prodi L., Feeder N., Sanders J. K. M.: J. Chem. Soc., Perkin Trans. 1 1999, 1057. <https://doi.org/10.1039/a809816f>
75d. Lynch D. E., Hamilton D. G., Calos N. J., Wood B., Sanders J. K. M.: Langmuir 1999, 15, 5600. <https://doi.org/10.1021/la9816508>
75e. Hansen J. G., Feeder N., Hamilton D. G., Gunter M. J., Becher J., Sanders J. K. M.: Org. Lett. 2000, 2, 449. <https://doi.org/10.1021/ol991289w>
75f. Gunter M. J., Bampos N., Johnstone K. D., Sanders J. K. M.: New J. Chem. 2001, 25, 166. <https://doi.org/10.1039/b006911f>
75g. Johnstone K. D., Bampos N., Sanders J. K. M., Gunter M. J.: Chem. Commun. 2003, 1396. <https://doi.org/10.1039/b302071a>
75h. Pascu S. I., Jarrosson T., Naumann C., Otto S., Kaiser G., Sanders J. K. M.: New J. Chem. 2005, 29, 80. <https://doi.org/10.1039/b415418e>
76. Kaiser G., Jarrosson T., Otto S., Ng Y.-F., Bond A. D., Sanders J. K. M.: Angew. Chem., Int. Ed. 2004, 43, 1959. <https://doi.org/10.1002/anie.200353075>
77. Hamilton D. G., Montalti M., Prodi L., Fontani M., Zanello P., Sanders J. K. M.: Chem. Eur. J. 2000, 6, 608. <https://doi.org/10.1002/(SICI)1521-3765(20000218)6:4<608::AID-CHEM608>3.0.CO;2-E>
78. The authors assigned this peak to reduction of a free NpI unit based on comparisons with model compounds. As the neutral bistable [2]catenane is constantly in a rapid equilibrium between the two co-conformers, the authors proposed that reduction occurs when the molecule adopts the minor co-conformer where the PmI unit is encircled. See ref.77.
79a. Anelli P.-L., Asakawa M., Ashton P. R., Bissell R. A., Clavier G., Gorski R., Kaifer A. E., Langford S. J., Mattersteig G., Menzer S., Philp D., Slawin A. M. Z., Spencer N., Stoddart J. F., Tolley M. S., Williams D. J.: Chem. Eur. J. 1997, 3, 1113. <https://doi.org/10.1002/chem.19970030719>
79b. Reversing the recognition components, such that rigid electron-deficient, dicationic components are in the dumbbell compound and the ring component is an electron-rich flexible crown ether results in a barrier for shuttling of ~10 kcal mol–1. See: Ashton P. R., Philp D., Spencer N., Stoddart J. F.: J. Chem. Soc., Chem. Commun. 1992, 1124. <https://doi.org/10.1039/c39920001124>
79c. Ashton P. R., Ballardini R., Balzani V., Bělohradský M., Gandolfi M. T., Philp D., Prodi L., Raymo F. M., Reddington M. V., Spencer N., Stoddart J. F., Venturi M., Williams D. J.: J. Am. Chem. Soc. 1996, 118, 4931. <https://doi.org/10.1021/ja954334d>
80. Iijima T., Vignon S. A., Tseng H.-R., Jarrosson T., Sanders J. K. M., Marchioni F., Venturi M., Apostoli E., Balzani V., Stoddart J. F.: Chem. Eur. J. 2004, 10, 6375. <https://doi.org/10.1002/chem.200400651>
81a. Asakawa M., Ashton P. R., Boyd S. E., Brown C. L., Gillard R. E., Kocian O., Raymo F. M., Stoddart J. F., Tolley M. S., White A. J. P., Williams D. J.: J. Org. Chem. 1997, 62, 26. <https://doi.org/10.1021/jo961025c>
81b. Bravo J. A., Raymo F. M., Stoddart J. F., White A. J. P., Williams D. J.: Eur. J. Org. Chem. 1998, 2565. <https://doi.org/10.1002/(SICI)1099-0690(199811)1998:11<2565::AID-EJOC2565>3.0.CO;2-8>
81c. Cabezon B., Cao J., Raymo F. M., Stoddart J. F., White A. J. P., Williams D. J.: Chem. Eur. J. 2000, 6, 2262. <https://doi.org/10.1002/1521-3765(20000616)6:12<2262::AID-CHEM2262>3.0.CO;2-G>
82. In the coalescence method, the rate of exchange at the point of coalescence is calculated from the separation, Δυ, between the two peaks at low temperature using the equation, kex = (πΔυ)/__MATH__. The rate constant, kex, is then entered into the Eyring equation, ΔGc‡ = –RTc ln (kch/kBTc), along with the coalescence temperature, Tc, in order to calculate the free energy of activation, ΔGc.
83. Vignon S. A., Jarrosson T., Iijima T., Tseng H.-R., Sanders J. K. M., Stoddart J. F.: J. Am. Chem. Soc. 2004, 126, 9884. <https://doi.org/10.1021/ja048080k>
84. The Ka value for binding of LiClO4 by [12]crown-4 at 298 K in MeCN is 2042 l mol–1. See: de Namor A. F. D., Ng J. C. Y., Tanco M. A. L., Saloman M.: J. Phys. Chem. 1996, 100, 14485. <https://doi.org/10.1021/jp960519a>
85a. Jäger R., Schmidt T., Karbach D., Vögtle F.: Synlett 1996, 8, 723. <https://doi.org/10.1055/s-1996-5509>
85b. Yamamoto C., Okamoto Y., Schmidt T., Jäger R., Vögtle F.: J. Am. Chem. Soc. 1997, 119, 10547. <https://doi.org/10.1021/ja971764q>
85c. Vögtle F., Safarowsky O., Heim C., Affeld A., Braun O., Mohry A.: Pure Appl. Chem. 1999, 71, 247. <https://doi.org/10.1351/pac199971020247>
85d. Mohry A., Schwierz H., Vögtle F.: Synthesis 1999, 10, 1753. <https://doi.org/10.1055/s-1999-3591>
85e. Reuter C., Mohry A., Sobanski A., Vögtle F.: Chem. Eur. J. 2000, 6, 1674. <https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1674::AID-CHEM1674>3.3.CO;2-9>
85f. Li Q. Y., Vogel E., Parham A. H., Nieger M., Bolte M., Fröhlich R., Saarenketo P., Rissanen K., Vögtle F.: Eur. J. Org. Chem. 2001, 4041. <https://doi.org/10.1002/1099-0690(200111)2001:21<4041::AID-EJOC4041>3.0.CO;2-7>
86a. Shinkai S., Ishihara M., Ueda K., Manabe O.: J. Chem. Soc., Perkin Trans. 2 1985, 511. <https://doi.org/10.1039/p29850000511>
86b. Pallavicini P. S., Perotti A., Poggi A., Seghi B., Fabbrizzi L.: J. Am. Chem. Soc. 1987, 109, 5139. <https://doi.org/10.1021/ja00251a016>
86c. Ueno A., Suzuki I., Osa T.: J. Am. Chem. Soc. 1989, 111, 6391. <https://doi.org/10.1021/ja00198a061>
86d. Minato S., Osa T., Ueno A.: J. Chem. Soc., Chem. Commun. 1991, 107. <https://doi.org/10.1039/c39910000107>
86e. Lednev I. K., Alfimov M. V.: Supramol. Sci. 1994, 1, 55. <https://doi.org/10.1016/0968-5677(94)90009-4>
86f. Nakamura M., Ikeda A., Ise N., Ikeda T., Ikeda H., Toda F., Ueno A.: J. Chem. Soc., Chem. Commun. 1995, 721. <https://doi.org/10.1039/c39950000721>
86g. Fabbrizzi L., Licchelli M., Pallavicini P., Parodi L.: Angew. Chem., Int. Ed. Engl. 1998, 37, 800. <https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<800::AID-ANIE800>3.0.CO;2-U>
86h. Nielsen M. B., Nielsen S. B., Becher J:. Chem. Commun. 1998, 475. <https://doi.org/10.1039/a707026h>
86i. Nielsen M. B., Hansen J. G., Becher J.: Eur. J. Org. Chem. 1999, 2807. <https://doi.org/10.1002/(SICI)1099-0690(199911)1999:11<2807::AID-EJOC2807>3.3.CO;2-E>
86j. Takenaka Y., Higashi M., Yoshida N.: J. Chem. Soc., Perkin Trans. 2 2002, 615. <https://doi.org/10.1039/b108204n>
86k. Fabbrizzi L., Foti F., Licchelli M., Maccarini P. M., Sacchi D., Zema M.: Chem. Eur. J. 2002, 8, 4965. <https://doi.org/10.1002/1521-3765(20021104)8:21<4965::AID-CHEM4965>3.0.CO;2-X>
87. Liu Y., Flood A. H., Moskowitz R. M., Stoddart J. F.: Chem. Eur. J. 2005, 11, 369. <https://doi.org/10.1002/chem.200400614>
88. Ashton P. R., Ballardini R., Balzani V., Boyd S. E., Credi A., Gandolfi M. T., Gómez-López M., Iqbal S., Philp D., Preece J. A., Prodi L., Ricketts H. G., Stoddart J. F., Tolley M. S., Venturi M., White A. J. P., Williams D. J.: Chem. Eur. J. 1997, 3, 152. <https://doi.org/10.1002/chem.19970030123>
89. Liu Y., Bonvallet P. A., Vignon S. A., Khan S. I., Stoddart J. F.: Angew. Chem., Int. Ed. 2005, 44, 3050. <https://doi.org/10.1002/anie.200500041>
90a. Ashton P. R., Reder A. S., Spencer N., Stoddart J. F.: J. Am. Chem. Soc. 1993, 115, 5286. <https://doi.org/10.1021/ja00065a046>
90b. Ashton P. R., Preece J. A., Stoddart J. F., Tolley M. S.: Synlett 1994, 789. <https://doi.org/10.1055/s-1994-23006>
90c. Ashton P. R., Huff J., Parsons I. W., Preece J. A., Stoddart J. F., Tolley M. S., Williams D. J., White A. J. P.: Chem. Eur. J. 1996, 2, 123.
90d. Armaroli N., Rodgers M. A. J., Ceroni P., Balzani V., Dietrich-Buchecker C. O., Kern J.-M., Bailal A., Sauvage J.-P.: Chem. Phys. Lett. 1995, 241, 555. <https://doi.org/10.1016/0009-2614(95)00666-R>