Collect. Czech. Chem. Commun.
2005, 70, 1669-1695
https://doi.org/10.1135/cccc20051669
Synthesis of 2-Substituted 6-(Hydroxymethyl)purine Bases and Nucleosides
Peter Šilhár, Radek Pohl, Ivan Votruba and Michal Hocek*
Centre for New Antivirals and Antineoplastics, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
References
1a. M., Holý A., Votruba I., Dvořáková H.: J. Med. Chem. 2000, 43, 1817.
<https://doi.org/10.1021/jm991167+>
1b. M., Holý A., Votruba I., Dvořáková H.: Collect. Czech. Chem. Commun. 2001, 66, 483.
<https://doi.org/10.1135/cccc20010483>
2. M., Nauš P., Pohl R., Votruba I., Furman P. A., Tharnish P. M., Otto M. J.: J. Med. Chem. 2005, 48, 5869.
<https://doi.org/10.1021/jm050335x>
3a. A. K., Gundersen L.-L., Langli G., Liu F., Nolsøe J. M. J.: Bioorg. Med. Chem. Lett. 2000, 10, 1207.
<https://doi.org/10.1016/S0960-894X(00)00188-8>
3b. G., Gundersen L.-L., Nissen-Meyer J., Rise F., Spilsberg B.: Bioorg. Med. Chem. Lett. 2002, 12, 567.
<https://doi.org/10.1016/S0960-894X(01)00803-4>
3c. L.-L., Nissen-Meyer J., Spilsberg D.: J. Med. Chem. 2002, 45, 1383.
<https://doi.org/10.1021/jm0110284>
4a. M.: Eur. J. Org. Chem. 2003, 245.
<https://doi.org/10.1002/ejoc.200390025>
4b. L. A., Gillaizeau I., Saito Y.: Chem. Rev. 2003, 103, 1875.
<https://doi.org/10.1021/cr010374q>
5. M.: Heterocycles 2004, 63, 1673.
<https://doi.org/10.3987/COM-04-10096>
6. P., Pohl R., Hocek M.: J. Org. Chem. 2004, 69, 7985.
<https://doi.org/10.1021/jo048812r>
7. K., Anke T., Hillen-Maske E., Steglich W.: Z. Naturforsch., C: Biosci. 1987, 42, 420.
<https://doi.org/10.1515/znc-1987-0415>
8a. B., Wolfenden R.: J. Am. Chem. Soc. 1970, 92, 4751.
<https://doi.org/10.1021/ja00718a056>
8b. R., Wentworth D. F., Mitchell G. N.: Biochemistry 1977, 16, 5071.
<https://doi.org/10.1021/bi00642a020>
9a. H., Connolly J. S.: J. Am. Chem. Soc. 1968, 90, 2979.
9b. D. K., McGuigan C., Robins M. J.: J. Org. Chem. 1985, 50, 2664.
<https://doi.org/10.1021/jo00215a014>
10. T., Dvořák D.: Org. Lett. 2003, 5, 4289.
<https://doi.org/10.1021/ol0355027>
11. N. J., Bryant J. D.: J. Org. Chem. 1979, 44, 4612.
<https://doi.org/10.1021/jo00393a033>
12. A.: Chem. Ber. 1968, 101, 611.
<https://doi.org/10.1002/cber.19681010231>
13. M. A., Giner-Sorolla A., Smith H., Brown G. B.: J. Org. Chem. 1962, 27, 567.
<https://doi.org/10.1021/jo01049a053>
14. P., Pohl R., Votruba I., Hocek M.: Org. Lett. 2004, 6, 3225.
<https://doi.org/10.1021/ol049059r>
15. P., Pohl R., Votruba I., Hocek M.: Org. Biomol. Chem. 2005, 3, 3001.
<https://doi.org/10.1039/b508122j>
16. (Pivaloyloxymethyl)zinc iodide was previously prepared, transmetallated to zinc-cuprate and used for conjugate additions or for uncatalyzed couplings with vinyl or allyl halides, as well as acyl chlorides: P., Chou T.-S., Jubert C., Rajagopal D.: J. Org. Chem. 1993, 58, 588.
<https://doi.org/10.1021/jo00055a010>
17a. L. H., Adams R.: J. Am. Chem. Soc. 1921, 43, 660.
<https://doi.org/10.1021/ja01436a036>
17b. P., Muhle H., Neuenschwander M.: Synthesis 1978, 593.
<https://doi.org/10.1055/s-1978-24823>
18. M., Holý A.: Collect. Czech. Chem. Commun. 1995, 60, 1386.
<https://doi.org/10.1135/cccc19951386>
19. J., Chládek S., Holý A., Smrt J.: Collect. Czech. Chem. Commun. 1966, 31, 3198.
<https://doi.org/10.1135/cccc19663198>
20. M., Holý A.: Collect. Czech. Chem. Commun. 1999, 64, 229.
<https://doi.org/10.1135/cccc19990229>
21a. M., Dvořák D., Hocek M.: Synthesis 2001, 1704.
<https://doi.org/10.1055/s-2001-16765>
21b. M., Votruba I., Dvořáková H.: Tetrahedron 2003, 59, 607.
<https://doi.org/10.1016/S0040-4020(02)01586-7>
21c. M., Dvořáková H.: J. Org. Chem. 2003, 68, 5773.
<https://doi.org/10.1021/jo034351i>
21d. M., Holý A., Dvořáková H.: Collect. Czech. Chem. Commun. 2002, 67, 325.
<https://doi.org/10.1135/cccc20020325>
21e. M., Hocková D., Štambaský J.: Collect. Czech. Chem. Commun. 2003, 68, 837.
<https://doi.org/10.1135/cccc20030837>
21f. M., Pohl R., Císařová I.: Eur. J. Org. Chem. 2005, 3026.
<https://doi.org/10.1002/ejoc.200500154>
21g. G., Gundersen L.-L., Rise F.: Tetrahedron 1996, 52, 5625.
<https://doi.org/10.1016/0040-4020(96)00199-8>
21h. J. M. J., Gundersen L.-L., Rise F.: Acta Chem. Scand. 1999, 53, 366.
<https://doi.org/10.3891/acta.chem.scand.53-0366>
22a. M., Hocková D., Dvořáková D.: Synthesis 2004, 889.
<https://doi.org/10.1055/s-2004-816012>
22b. M., Pohl R.: Synthesis 2004, 2869.
<https://doi.org/10.1055/s-2004-834881>
23. L. F., Broom A. D., Robins M. J., Bloch A.: J. Med. Chem. 1972, 15, 735.
<https://doi.org/10.1021/jm00277a010>
24. R. P., Parks R. E., Jr.: Methods Enzymol. 1978, 51, 502.
<https://doi.org/10.1016/S0076-6879(78)51069-0>
25. T. C., Epstein J. W.: J. Org. Chem. 1982, 47, 4881.
<https://doi.org/10.1021/jo00146a013>
26. R. K., Godefroi E. F., Taylor E. C., Lewis L. R., Jackson A.: J. Am. Chem. Soc. 1961, 83, 2574.
<https://doi.org/10.1021/ja01472a034>
27a. J. F., Jones J. W., Robins R. K.: J. Org. Chem. 1963, 28, 945.
<https://doi.org/10.1021/jo01039a016>
27b. Z., Francom P., Robins M. J.: J. Org. Chem. 2003, 68, 989.
<https://doi.org/10.1021/jo020644k>
28. M. J., Uznanski B.: Can. J. Chem. 1981, 59, 2601.
<https://doi.org/10.1139/v81-374>
29. Z., Cottam H. B., Revankar G. R., Robins R. K.: J. Am. Chem. Soc. 1984, 106, 6379.
<https://doi.org/10.1021/ja00333a046>
30. J.-C., Bazin H., Chattopadhyaya J.: Tetrahedron 1987, 43, 2355.
<https://doi.org/10.1016/S0040-4020(01)86822-8>
31. A., Shinozaki M., Yamaguchi T., Homma H., Nomoto R.: J. Med. Chem. 1992, 35, 241.
<https://doi.org/10.1021/jm00080a007>
32. M., Nakamura H., Iitaka Y., Ohno M.: Chem. Pharm. Bull. 1983, 31, 3104.
<https://doi.org/10.1248/cpb.31.3104>

