Collect. Czech. Chem. Commun.
2005, 70, 1756-1768
https://doi.org/10.1135/cccc20051756
Hydration Gibbs Energies of Nucleic Acid Bases Determined by Gibbs Energy Perturbation, Continuous and Hybrid Approaches
Jindřich Fanfrlík, Jaroslav Rejnek, Michal Hanus and Pavel Hobza*
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague 6, Czech Republic
References
1. J. Phys. Chem A 1998, 102, 6167.
< N. U., Leszczynski J.: https://doi.org/10.1021/jp9806260>
2. J. Mol. Struct. (THEOCHEM) 1999, 487, 107.
< N. U., Leszczynski J.: https://doi.org/10.1016/S0166-1280(99)00144-X>
3. J. Comput. Chem. 2003, 24, 669.
< M., Rega N., Scalmani G., Barone V.: https://doi.org/10.1002/jcc.10189>
4. J. Comput. Chem. 1998, 19, 404.
< V., Cossi M., Tomasi J.: https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W>
5. AIChE J. 2002, 48, 2332.
< A., Krooshof G. J. P., Taylor R.: https://doi.org/10.1002/aic.690481023>
6. Chem. Rev. 2005, 105, 2999.
< J., Mennucci B., Cammi R.: https://doi.org/10.1021/cr9904009>
7. J. Phys. Chem. A 2003, 107, 6630.
< C. O., Mennucci B., Vreven T.: https://doi.org/10.1021/jp0346918>
8. J. Phys. Chem. B 2002, 106, 2708.
< D., Paneth P., Truhlar D. G.: https://doi.org/10.1021/jp013252a>
9. Collect. Czech. Chem. Commun. 2003, 68, 2231.
< J., Hobza P.: https://doi.org/10.1135/cccc20032231>
10. J. Am. Chem. Soc. 2003, 125, 7678.
< M., Ryjáček F., Kabeláč M., Kubař T., Bogdan T. V., Trygubenko S. A., Hobza P.: https://doi.org/10.1021/ja034245y>
11. J. Phys. Chem. B 2004, 108, 2087.
< M., Kabeláč M., Rejnek J., Ryjáček F., Hobza P.: https://doi.org/10.1021/jp036090m>
12. Phys. Chem. Chem. Phys. 2005, 7, 2006.
< J., Hanus M., Kabeláč M., Ryjáček F., Hobza P.: https://doi.org/10.1039/b501499a>
13. Phys. Chem. Chem. Phys. 2002, 4, 4192.
< S. A., Bogdan T. V., Rueda M., Orozco M., Luque F. J., Šponer J., Slavíček P., Hobza P.: https://doi.org/10.1039/b202156k>
14. Chem. Rev. 2001, 101, 203.
< M., Luque F. J.: https://doi.org/10.1021/cr000703z>
15. Chem. Phys. Lett. 1999, 302, 461.
< C.: https://doi.org/10.1016/S0009-2614(99)00173-6>
16. Chem. Phys. 2000, 253, 13.
< C.: https://doi.org/10.1016/S0301-0104(99)00371-7>
17. J. Phys. Chem. A 2001, 105, 7241.
< J. R., Riveros J. M.: https://doi.org/10.1021/jp004192w>
18. J. Phys. Chem. A 2002, 106, 7434.
< J. R., Riveros J. M.: https://doi.org/10.1021/jp025928n>
19. Chem. Phys. Lett. 1993, 208, 359.
< M., Fitzgerald G., Komornicki A.: https://doi.org/10.1016/0009-2614(93)87156-W>
20. Mol. Phys. 1970, 19, 553.
< S. F., Bernardi F.: https://doi.org/10.1080/00268977000101561>
21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. W., Johnson B. G., Chen W., Wong M. W., Andres J. L., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 03. Gaussian Inc., Pittsburgh (PA) 1998.
22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Jr., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03. Gaussian, Inc., Pittsburgh (PA) 2003.
23. Chem. Phys. Lett. 1989, 162, 165.
< R., Bar M., Haser M., Horn H., Kolmel C.: https://doi.org/10.1016/0009-2614(89)85118-8>
24. J. Phys. Chem. A 1998, 102, 6921.
< M., Engkvist O., Sponer J., Jungwirth P., Hobza P.: https://doi.org/10.1021/jp9816418>
25. J. Am. Chem. Soc. 1995, 117, 5179.
< W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A.: https://doi.org/10.1021/ja00124a002>
26. Case D. A., Cheatham III T. E., Simmerling C. L., Wang J., Duke R. E., Luo R., Merz K. M., Wang B., Pearlman D. A., Crowley M., Brozell S., Tsui V., Gohlke H., Mongan J., Hornak V., Cui G., Beroza P., Schafmeister C., Caldwell J. W., Ross W. S., Kollman P. A.: Amber 8: Manual and help page, 2004, http://amber.scripps.edu/.
27. J. Phys. Chem. 1993, 97, 10269.
< C. I., Cieplak P., Cornell W. D., Kollman P. A.: https://doi.org/10.1021/j100142a004>
28. J. Am. Chem. Soc. 1993, 115, 9620.
< W. D., Cieplak P., Bayly C. I., Kollman P. A.: https://doi.org/10.1021/ja00074a030>
29. Gaussian 03 on-line help, http://www.gaussian.com/g_ur/g03mantop.htm. Accessed 24.1.03.
30. J. Mol. Model. 2001, 7, 306.
< E., Hess B., van der Spoel D.: https://doi.org/10.1007/s008940100045>
31. Comput. Phys. Commun. 1995, 91, 43.
< H. J. C., Vanderspoel D., Vandrunen R.: https://doi.org/10.1016/0010-4655(95)00042-E>
32. Chem. Phys. Lett. 1994, 222, 529.
< T. C., Mark A. E., Vanschaik R. C., Gerber P. R., Vangunsteren W. F.: https://doi.org/10.1016/0009-2614(94)00397-1>