Collect. Czech. Chem. Commun.
2005, 70, 1769-1786
https://doi.org/10.1135/cccc20051769
2-Deoxyribose Radicals in the Gas Phase and Aqueous Solution. Transient Intermediates of Hydrogen Atom Abstraction from 2-Deoxyribofuranose
Luc A. Vannier, Chunxiang Yao and František Tureček*
Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, U.S.A.
References
1. Becker D., Sevilla M. D. in: Advances in Radiation Biology (J. T. Lett and W. K. Sinclair, Eds), Vol. XVII, p. 121. Academic Press, San Diego 1993.
2. Adv. Carbohydr. Chem. Biochem. 1980, 37, 7.
< C.: https://doi.org/10.1016/S0065-2318(08)60019-0>
3a. Radiat. Res. 1997, 148, 512.
D. M.:
3b. Radiat. Res. 1997, 147, 663.
< D. M.: https://doi.org/10.2307/3579478>
4. J. Am. Chem. Soc. 1994, 116, 232.
< K., Osman R.: https://doi.org/10.1021/ja00080a027>
5. J. Phys. Chem. 1995, 99, 3867.
< A.-O., Sevilla M. D.: https://doi.org/10.1021/j100011a064>
6. J. Phys. Chem. B 1998, 102, 7674.
< S. D., Boyd R. J., Eriksson L. A.: https://doi.org/10.1021/jp9824407>
7a. J. Am. Chem. Soc. 1972, 94, 8205.
< C., Sundaralingam M.: https://doi.org/10.1021/ja00778a043>
7b. Biochem. J. 1972, 130, 453.
< S., Hukins D. W. L.: https://doi.org/10.1042/bj1300453>
8. J. Am. Soc. Mass Spectrom. 2004, 15, 1055.
< S., Sadílek M., Chen X., Tureček F.: https://doi.org/10.1016/j.jasms.2004.03.017>
9. J. Am. Soc. Mass Spectrom. 2004, 15, 1068.
< S., Sadílek M., Chen X., Adams L. E., Tureček F.: https://doi.org/10.1016/j.jasms.2004.04.004>
10. Acta Chem. Scand. 1960, 14, 1357.
< S.: https://doi.org/10.3891/acta.chem.scand.14-1357>
11. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh (PA) 2003.
12a. J. Chem. Phys. 1993, 98, 1372.
< A. D.: https://doi.org/10.1063/1.464304>
12b. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
12c. J. Phys. Chem. 1994, 98, 11623.
< P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.: https://doi.org/10.1021/j100096a001>
13. Phys. Rev. 1934, 46, 618.
< C., Plesset M. S.: https://doi.org/10.1103/PhysRev.46.618>
14a. Adv. Quantum Chem. 1980, 12, 189.
< I.: https://doi.org/10.1016/S0065-3276(08)60317-2>
14b. J. Chem. Phys. 1986, 84, 4530.
< H. B.: https://doi.org/10.1063/1.450026>
15. J. Phys. Chem. A 1998, 102, 4703.
< F.: https://doi.org/10.1021/jp980940u>
16a. J. Phys. Chem. A 1999, 103, 1905.
< F., Wolken J. K.: https://doi.org/10.1021/jp984826n>
16b. Eur. Mass Spectrom. 1998, 4, 321.
< F., Wolken J. K., Sadílek M.: https://doi.org/10.1255/ejms.228>
16c. J. Am. Chem. Soc. 1999, 121, 6010.
< J. K., Tureček F.: https://doi.org/10.1021/ja983789a>
16d. J. Phys. Chem. A 1999, 103, 6268.
< J. K., Tureček F.: https://doi.org/10.1021/jp991077g>
16e. J. Chem. Soc., Perkin Trans. 2 1999, 2315.
< F., Carpenter F. H.: https://doi.org/10.1039/a903943k>
16f. J. Am. Chem. Soc. 2000, 122, 9511.
< M., Tureček F.: https://doi.org/10.1021/ja001229h>
17a. J. Am. Chem. Soc. 2000, 122, 357.
< P. R.: https://doi.org/10.1021/ja9928475>
17b. J. Am. Chem. Soc. 2003, 125, 2142.
< P. R., Bentrup K. H.: https://doi.org/10.1021/ja029102a>
18a. J. Chem. Phys. 2002, 117, 43.
< M., Scalmani G., Rega N., Barone V.: https://doi.org/10.1063/1.1480445>
18b. Biochemistry 1999, 38, 9089.
M., Scalmani G., Rega N., Barone V.:
19. J. Phys. Chem. 1994, 98, 9642.
H., Garrett B. C.:
20. J. Phys. Chem. A 2002, 106, 2727.
< B., Wagner A. F., Harding L. B., Asher R. L., Feller D., Dixon D. A., Peterson K. A., Song Y., Qian X., Ng C.-Y., Liu J., Chen W., Schwenke D. W.: https://doi.org/10.1021/jp013909s>
21. J. Phys. Chem. A 2002, 106, 9641.
< T. M., Blanksby S. J., Kato S., Bierbaum V. M., Davico G. E., Schwartz R. L., Lineberger W. C., Ellison G. B.: https://doi.org/10.1021/jp014614h>
22. J. Phys. Chem. A 2004, 108, 9283.
< X., Syrstad E. A., Gerbaux P., Nguyen M. T., Tureček F.: https://doi.org/10.1021/jp046575q>
23a. J. Am. Chem. Soc. 1998, 120, 8848.
< A., Yu D., Armstrong D. A.: https://doi.org/10.1021/ja9807789>
23b. Biochemistry 1999, 38, 9089.
< A., Yu D., Taylor J., Shustov G. V., Block D. A., Armstrong D. A.: https://doi.org/10.1021/bi990249x>
24. Kochetkov N. K.: Radiation Chemistry of Carbohydrates. Pergamon Press, Oxford 1979.