Collect. Czech. Chem. Commun. 2005, 70, 1769-1786
https://doi.org/10.1135/cccc20051769

2-Deoxyribose Radicals in the Gas Phase and Aqueous Solution. Transient Intermediates of Hydrogen Atom Abstraction from 2-Deoxyribofuranose

Luc A. Vannier, Chunxiang Yao and František Tureček*

Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, U.S.A.

References

1. Becker D., Sevilla M. D. in: Advances in Radiation Biology (J. T. Lett and W. K. Sinclair, Eds), Vol. XVII, p. 121. Academic Press, San Diego 1993.
2. Von Sonntag C.: Adv. Carbohydr. Chem. Biochem. 1980, 37, 7. <https://doi.org/10.1016/S0065-2318(08)60019-0>
3a. Close D. M.: Radiat. Res. 1997, 148, 512.
3b. Close D. M.: Radiat. Res. 1997, 147, 663. <https://doi.org/10.2307/3579478>
4. Miaskiewicz K., Osman R.: J. Am. Chem. Soc. 1994, 116, 232. <https://doi.org/10.1021/ja00080a027>
5. Colson A.-O., Sevilla M. D.: J. Phys. Chem. 1995, 99, 3867. <https://doi.org/10.1021/j100011a064>
6. Wetmore S. D., Boyd R. J., Eriksson L. A.: J. Phys. Chem. B 1998, 102, 7674. <https://doi.org/10.1021/jp9824407>
7a. Altona C., Sundaralingam M.: J. Am. Chem. Soc. 1972, 94, 8205. <https://doi.org/10.1021/ja00778a043>
7b. Arnott S., Hukins D. W. L.: Biochem. J. 1972, 130, 453. <https://doi.org/10.1042/bj1300453>
8. Vivekananda S., Sadílek M., Chen X., Tureček F.: J. Am. Soc. Mass Spectrom. 2004, 15, 1055. <https://doi.org/10.1016/j.jasms.2004.03.017>
9. Vivekananda S., Sadílek M., Chen X., Adams L. E., Tureček F.: J. Am. Soc. Mass Spectrom. 2004, 15, 1068. <https://doi.org/10.1016/j.jasms.2004.04.004>
10. Furberg S.: Acta Chem. Scand. 1960, 14, 1357. <https://doi.org/10.3891/acta.chem.scand.14-1357>
11. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh (PA) 2003.
12a. Becke A. D.: J. Chem. Phys. 1993, 98, 1372. <https://doi.org/10.1063/1.464304>
12b. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
12c. Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.: J. Phys. Chem. 1994, 98, 11623. <https://doi.org/10.1021/j100096a001>
13. Møller C., Plesset M. S.: Phys. Rev. 1934, 46, 618. <https://doi.org/10.1103/PhysRev.46.618>
14a. Mayer I.: Adv. Quantum Chem. 1980, 12, 189. <https://doi.org/10.1016/S0065-3276(08)60317-2>
14b. Schlegel H. B.: J. Chem. Phys. 1986, 84, 4530. <https://doi.org/10.1063/1.450026>
15. Tureček F.: J. Phys. Chem. A 1998, 102, 4703. <https://doi.org/10.1021/jp980940u>
16a. Tureček F., Wolken J. K.: J. Phys. Chem. A 1999, 103, 1905. <https://doi.org/10.1021/jp984826n>
16b. Tureček F., Wolken J. K., Sadílek M.: Eur. Mass Spectrom. 1998, 4, 321. <https://doi.org/10.1255/ejms.228>
16c. Wolken J. K., Tureček F.: J. Am. Chem. Soc. 1999, 121, 6010. <https://doi.org/10.1021/ja983789a>
16d. Wolken J. K., Tureček F.: J. Phys. Chem. A 1999, 103, 6268. <https://doi.org/10.1021/jp991077g>
16e. Tureček F., Carpenter F. H.: J. Chem. Soc., Perkin Trans. 2 1999, 2315. <https://doi.org/10.1039/a903943k>
16f. Polášek M., Tureček F.: J. Am. Chem. Soc. 2000, 122, 9511. <https://doi.org/10.1021/ja001229h>
17a. Rablen P. R.: J. Am. Chem. Soc. 2000, 122, 357. <https://doi.org/10.1021/ja9928475>
17b. Rablen P. R., Bentrup K. H.: J. Am. Chem. Soc. 2003, 125, 2142. <https://doi.org/10.1021/ja029102a>
18a. Cossi M., Scalmani G., Rega N., Barone V.: J. Chem. Phys. 2002, 117, 43. <https://doi.org/10.1063/1.1480445>
18b. Cossi M., Scalmani G., Rega N., Barone V.: Biochemistry 1999, 38, 9089.
19. Gia H., Garrett B. C.: J. Phys. Chem. 1994, 98, 9642.
20. Ruscic B., Wagner A. F., Harding L. B., Asher R. L., Feller D., Dixon D. A., Peterson K. A., Song Y., Qian X., Ng C.-Y., Liu J., Chen W., Schwenke D. W.: J. Phys. Chem. A 2002, 106, 2727. <https://doi.org/10.1021/jp013909s>
21. Ramond T. M., Blanksby S. J., Kato S., Bierbaum V. M., Davico G. E., Schwartz R. L., Lineberger W. C., Ellison G. B.: J. Phys. Chem. A 2002, 106, 9641. <https://doi.org/10.1021/jp014614h>
22. Chen X., Syrstad E. A., Gerbaux P., Nguyen M. T., Tureček F.: J. Phys. Chem. A 2004, 108, 9283. <https://doi.org/10.1021/jp046575q>
23a. Rauk A., Yu D., Armstrong D. A.: J. Am. Chem. Soc. 1998, 120, 8848. <https://doi.org/10.1021/ja9807789>
23b. Rauk A., Yu D., Taylor J., Shustov G. V., Block D. A., Armstrong D. A.: Biochemistry 1999, 38, 9089. <https://doi.org/10.1021/bi990249x>
24. Kochetkov N. K.: Radiation Chemistry of Carbohydrates. Pergamon Press, Oxford 1979.