Collect. Czech. Chem. Commun.
2005, 70, 1799-1810
https://doi.org/10.1135/cccc20051799
The DNA-Porphyrin Interactions Studied by Vibrational and Electronic Circular Dichroism Spectroscopy
Jakub Novýa, Marie Urbanováb,* and Karel Volkaa
a Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
b Department of Physics and Measurements, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
References
1. Nucleic Acids Res. 1979, 6, 3093.
< R. J., Howard J. C., Mark E. H., Gupta N. D.: https://doi.org/10.1093/nar/6.9.3093>
2. Chirality 2003, 15, 329.
< R. F.: https://doi.org/10.1002/chir.10206>
3. Inorg. Chim. Acta 1990, 167, 97.
< K., Nakamoto K.: https://doi.org/10.1016/S0020-1693(00)83942-0>
4. Nucleic Acids Res. 1980, 8, 2835.
< R. J., Munson B. R.: https://doi.org/10.1093/nar/8.12.2835>
5. Bioorg. Med. Chem. 1995, 3, 671.
< K. G., Neidle S.: https://doi.org/10.1016/0968-0896(95)00052-I>
6. J. Phys. Chem. B 2001, 105, 5018.
< S. G., Mojzeš P., Mizutani Y., Kitagawa T., Turpin P.-Y.: https://doi.org/10.1021/jp004207q>
7. Biophys. Chem. 2001, 92, 35.
< S., Jeon S. H., Kim B. J., Han S. W., Jang H. G., Kim S. K.: https://doi.org/10.1016/S0301-4622(01)00181-8>
8. Biochemistry 1996, 35, 2818.
< L. A., Zhou F. X., Presnell S. R., Woo R. J., Peek M. E., Plaskon R. R., Williams L. D.: https://doi.org/10.1021/bi952443z>
9. Coord. Chem. Rev. 2000, 208, 169.
< P., McMillin D. R.: https://doi.org/10.1016/S0010-8545(00)00295-2>
10. J. Phys. Chem. B 2003, 107, 7532.
< P., Kruglik S. G., Baumruk V., Turpin P.-Y.: https://doi.org/10.1021/jp034677v>
11. Biochemistry 1983, 22, 2406.
< R. F., Gibbs E. J., Villafranca J. J.: https://doi.org/10.1021/bi00279a016>
12. Inorg. Chim. Acta 2001, 317, 59.
< R. F., Ewen S., Rao A., Meyer A. S., Freedman M. A., Collings P. J., Frey S. L., Ranen M. C.: https://doi.org/10.1016/S0020-1693(01)00340-1>
13. J. Mol. Catal. 1984, 23, 235.
< R. F., Antebi A., Ehrlich B., Sidney D., Gibbs E. J., Bassner S. L., Depoy L. M.: https://doi.org/10.1016/0304-5102(84)80011-5>
14. J. Raman Spectrosc. 1999, 30, 677.
< A. G., Kruglik S. G., Ermolenkov V. V., Orlovich V. A., Turpin P.-Y., Greve J., Otto C.: https://doi.org/10.1002/(SICI)1097-4555(199908)30:8<677::AID-JRS440>3.0.CO;2-9>
15. J. Phys. Chem. 1997, 101, 6322.
< F. J., Stephens P. J., Cheeseman J. R., Frisch M. J.: https://doi.org/10.1021/jp9712359>
16. J. Am. Chem. Soc. 1976, 98, 2715.
< L. A., Keiderling T. A., Stephens P. J.: https://doi.org/10.1021/ja00426a007>
17. Keiderling T. A. in: Practical Fourier Transform Infrared Spectroscopy (J. R. Ferraro and K. Krishnan, Eds), p. 203. Academic Press, San Diego 1990.
18. Enantiomer 1998, 3, 283.
L. A., Freedman T. B.:
19. Nafie L. A., Freedman T. B. in: Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi and R. W. Woody, Eds), 2nd ed., p. 97. Wiley, New York 2000.
20. Anal. Bioanal. Chem. 2000, 366, 727.
< P. L., Zhao C.: https://doi.org/10.1007/s002160051566>
21. J. Org. Chem. 2002, 67, 161.
< P., Navrátilová H., Setnička V., Urbanová M., Volka K.: https://doi.org/10.1021/jo016094s>
22. J. Phys. Chem. 2001, 105, 8931.
< V., Urbanová M., Bouř P., Král V., Volka K.: https://doi.org/10.1021/jp011485w>
23. Keiderling T. A. in: Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi and R. W. Woody, Eds), 2nd ed., p. 621. Wiley, New York 2000.
24. Biopolymers 2001, 60, 307.
< M., Setnička V., Král V., Volka K.: https://doi.org/10.1002/1097-0282(2001)60:4<307::AID-BIP9992>3.0.CO;2-1>
25. Biopolymers 2003, 72, 374.
< V., van de Sande J. H., Wieser H.: https://doi.org/10.1002/bip.10439>
26. Biopolymers 2002, 61, 243.
< V., Leonenko Z., Cramb D., van de Sande J. H., Wieser H.: https://doi.org/10.1002/bip.10159>
27. J. Mol. Struct. 2005, 748, 17.
< J., Urbanová M., Volka K.: https://doi.org/10.1016/j.molstruc.2005.03.011>
28. Biopolymers 2003, 72, 490.
< D., Kalisch B., van de Sande J. H., Wieser H.: https://doi.org/10.1002/bip.10478>
29. Biophys. J. 1994, 67, 2460.
< L., Yang L., Keiderling T. A.: https://doi.org/10.1016/S0006-3495(94)80734-9>
30. Biochemistry 1994, 33, 8428.
< L., Pančoška P., Keiderling T. A.: https://doi.org/10.1021/bi00194a006>
31. J. Luminescence 1998, 78, 53.
< S. C. M., Borissevitch I. E., Perussi J. R., Imasato H., Tabak M.: https://doi.org/10.1016/S0022-2313(97)00278-0>
32. J. Inorg. Biochem. 2003, 94, 127.
< S. C. M., Vidoto E. A., Nascimento O. R., Tabak M.: https://doi.org/10.1016/S0162-0134(02)00615-3>
33. J. Inorg. Nucl. Chem. 1974, 36, 599.
< R. F., Spiro E. G., Teach M.: https://doi.org/10.1016/0022-1902(74)80120-X>
34. Chirality 2000, 12, 199.
< M., Setnička V., Volka K.: https://doi.org/10.1002/(SICI)1520-636X(2000)12:4<199::AID-CHIR6>3.0.CO;2-L>
35. Johnson W. C. in: Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi and R. W. Woody, Eds), 2nd ed., p. 703. Wiley, New York 2000.
36. Nucleic Acids Res. 2002, 30, 3015.
< D. R., Min K.-L., Damha M. J.: https://doi.org/10.1093/nar/gkf429>
37. Biophys. Chem. 2003, 104, 477.
< M., Sarkar M., Graslund A.: https://doi.org/10.1016/S0301-4622(03)00035-8>
38. J. Phys. Chem. B 2002, 106, 13306.
< Z., Shichi T., Takagi K.: https://doi.org/10.1021/jp021162f>
39. Biochemistry 1992, 31, 10265.
< L., Keiderling T. A.: https://doi.org/10.1021/bi00157a013>