Collect. Czech. Chem. Commun. 2005, 70, 1799-1810
https://doi.org/10.1135/cccc20051799

The DNA-Porphyrin Interactions Studied by Vibrational and Electronic Circular Dichroism Spectroscopy

Jakub Novýa, Marie Urbanováb,* and Karel Volkaa

a Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
b Department of Physics and Measurements, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic

References

1. Fiel R. J., Howard J. C., Mark E. H., Gupta N. D.: Nucleic Acids Res. 1979, 6, 3093. <https://doi.org/10.1093/nar/6.9.3093>
2. Pasternack R. F.: Chirality 2003, 15, 329. <https://doi.org/10.1002/chir.10206>
3. Bütje K., Nakamoto K.: Inorg. Chim. Acta 1990, 167, 97. <https://doi.org/10.1016/S0020-1693(00)83942-0>
4. Fiel R. J., Munson B. R.: Nucleic Acids Res. 1980, 8, 2835. <https://doi.org/10.1093/nar/8.12.2835>
5. Ford K. G., Neidle S.: Bioorg. Med. Chem. 1995, 3, 671. <https://doi.org/10.1016/0968-0896(95)00052-I>
6. Kruglik S. G., Mojzeš P., Mizutani Y., Kitagawa T., Turpin P.-Y.: J. Phys. Chem. B 2001, 105, 5018. <https://doi.org/10.1021/jp004207q>
7. Lee S., Jeon S. H., Kim B. J., Han S. W., Jang H. G., Kim S. K.: Biophys. Chem. 2001, 92, 35. <https://doi.org/10.1016/S0301-4622(01)00181-8>
8. Lipscomb L. A., Zhou F. X., Presnell S. R., Woo R. J., Peek M. E., Plaskon R. R., Williams L. D.: Biochemistry 1996, 35, 2818. <https://doi.org/10.1021/bi952443z>
9. Lugo-Ponce P., McMillin D. R.: Coord. Chem. Rev. 2000, 208, 169. <https://doi.org/10.1016/S0010-8545(00)00295-2>
10. Mojzeš P., Kruglik S. G., Baumruk V., Turpin P.-Y.: J. Phys. Chem. B 2003, 107, 7532. <https://doi.org/10.1021/jp034677v>
11. Pasternack R. F., Gibbs E. J., Villafranca J. J.: Biochemistry 1983, 22, 2406. <https://doi.org/10.1021/bi00279a016>
12. Pasternack R. F., Ewen S., Rao A., Meyer A. S., Freedman M. A., Collings P. J., Frey S. L., Ranen M. C.: Inorg. Chim. Acta 2001, 317, 59. <https://doi.org/10.1016/S0020-1693(01)00340-1>
13. Pasternack R. F., Antebi A., Ehrlich B., Sidney D., Gibbs E. J., Bassner S. L., Depoy L. M.: J. Mol. Catal. 1984, 23, 235. <https://doi.org/10.1016/0304-5102(84)80011-5>
14. Shvedko A. G., Kruglik S. G., Ermolenkov V. V., Orlovich V. A., Turpin P.-Y., Greve J., Otto C.: J. Raman Spectrosc. 1999, 30, 677. <https://doi.org/10.1002/(SICI)1097-4555(199908)30:8<677::AID-JRS440>3.0.CO;2-9>
15. Devlin F. J., Stephens P. J., Cheeseman J. R., Frisch M. J.: J. Phys. Chem. 1997, 101, 6322. <https://doi.org/10.1021/jp9712359>
16. Nafie L. A., Keiderling T. A., Stephens P. J.: J. Am. Chem. Soc. 1976, 98, 2715. <https://doi.org/10.1021/ja00426a007>
17. Keiderling T. A. in: Practical Fourier Transform Infrared Spectroscopy (J. R. Ferraro and K. Krishnan, Eds), p. 203. Academic Press, San Diego 1990.
18. Nafie L. A., Freedman T. B.: Enantiomer 1998, 3, 283.
19. Nafie L. A., Freedman T. B. in: Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi and R. W. Woody, Eds), 2nd ed., p. 97. Wiley, New York 2000.
20. Polavarapu P. L., Zhao C.: Anal. Bioanal. Chem. 2000, 366, 727. <https://doi.org/10.1007/s002160051566>
21. Bouř P., Navrátilová H., Setnička V., Urbanová M., Volka K.: J. Org. Chem. 2002, 67, 161. <https://doi.org/10.1021/jo016094s>
22. Setnička V., Urbanová M., Bouř P., Král V., Volka K.: J. Phys. Chem. 2001, 105, 8931. <https://doi.org/10.1021/jp011485w>
23. Keiderling T. A. in: Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi and R. W. Woody, Eds), 2nd ed., p. 621. Wiley, New York 2000.
24. Urbanová M., Setnička V., Král V., Volka K.: Biopolymers 2001, 60, 307. <https://doi.org/10.1002/1097-0282(2001)60:4<307::AID-BIP9992>3.0.CO;2-1>
25. Andrushchenko V., van de Sande J. H., Wieser H.: Biopolymers 2003, 72, 374. <https://doi.org/10.1002/bip.10439>
26. Andrushchenko V., Leonenko Z., Cramb D., van de Sande J. H., Wieser H.: Biopolymers 2002, 61, 243. <https://doi.org/10.1002/bip.10159>
27. Nový J., Urbanová M., Volka K.: J. Mol. Struct. 2005, 748, 17. <https://doi.org/10.1016/j.molstruc.2005.03.011>
28. Tsankov D., Kalisch B., van de Sande J. H., Wieser H.: Biopolymers 2003, 72, 490. <https://doi.org/10.1002/bip.10478>
29. Wang L., Yang L., Keiderling T. A.: Biophys. J. 1994, 67, 2460. <https://doi.org/10.1016/S0006-3495(94)80734-9>
30. Wang L., Pančoška P., Keiderling T. A.: Biochemistry 1994, 33, 8428. <https://doi.org/10.1021/bi00194a006>
31. Gandini S. C. M., Borissevitch I. E., Perussi J. R., Imasato H., Tabak M.: J. Luminescence 1998, 78, 53. <https://doi.org/10.1016/S0022-2313(97)00278-0>
32. Gandini S. C. M., Vidoto E. A., Nascimento O. R., Tabak M.: J. Inorg. Biochem. 2003, 94, 127. <https://doi.org/10.1016/S0162-0134(02)00615-3>
33. Pasternack R. F., Spiro E. G., Teach M.: J. Inorg. Nucl. Chem. 1974, 36, 599. <https://doi.org/10.1016/0022-1902(74)80120-X>
34. Urbanová M., Setnička V., Volka K.: Chirality 2000, 12, 199. <https://doi.org/10.1002/(SICI)1520-636X(2000)12:4<199::AID-CHIR6>3.0.CO;2-L>
35. Johnson W. C. in: Circular Dichroism: Principles and Applications (N. Berova, K. Nakanishi and R. W. Woody, Eds), 2nd ed., p. 703. Wiley, New York 2000.
36. Yazbeck D. R., Min K.-L., Damha M. J.: Nucleic Acids Res. 2002, 30, 3015. <https://doi.org/10.1093/nar/gkf429>
37. Banyay M., Sarkar M., Graslund A.: Biophys. Chem. 2003, 104, 477. <https://doi.org/10.1016/S0301-4622(03)00035-8>
38. Tong Z., Shichi T., Takagi K.: J. Phys. Chem. B 2002, 106, 13306. <https://doi.org/10.1021/jp021162f>
39. Wang L., Keiderling T. A.: Biochemistry 1992, 31, 10265. <https://doi.org/10.1021/bi00157a013>