Collect. Czech. Chem. Commun.
2005, 70, 1953-1969
https://doi.org/10.1135/cccc20051953
Sulfoxide-Modified Julia-Lythgoe Olefination: Highly Stereoselective Di-, Tri-, and Tetrasubstituted Double Bond Formation
Jiří Pospíšil, Tomáš Pospíšil and István E. Markó*
Département de Chimie, Université catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
References
1a. Dumeunier R., Markó I. E. in: Modern Carbonyl Olefination (T. Takeda, Ed.), p. 104. Wiley-VCH, Weinheim 2004.
1b. Kociensky P. J. in: Comprehensive Organic Synthesis (B. M. Trost and I. Fleming, Eds), Vol. 6. Pergamon, Oxford 1991.
1c. Tetrahedron Lett. 1973, 4833.
< M., Paris J. M.: https://doi.org/10.1016/S0040-4039(01)87348-2>
1d. J. Chem. Soc., Perkin Trans. 1 1980, 1045.
< P. J., Lythgoe B., Waterhouse I.: https://doi.org/10.1039/p19800001045>
1e. Phosphorus Sulfur Relat. Elem. 1985, 24, 97.
< P. J.: https://doi.org/10.1080/03086648508073398>
2a. Synlett 1994, 859.
< M., Suzuki S., Taniguchi T., Tokunaga Y., Fukumoto K.: https://doi.org/10.1055/s-1994-23033>
2b. J. Org. Chem. 1995, 60, 3194.
< G. E., Savin K. A., Welgarz M. A.: https://doi.org/10.1021/jo00115a041>
2c. Tetrahedron Lett. 1996, 37, 2089.
< I. E., Murphy F., Dolan S.: https://doi.org/10.1016/0040-4039(96)00200-6>
2d. Tetrahedron 2003, 59, 10351.
< H. B.: https://doi.org/10.1016/j.tet.2003.09.101>
2e. Trends Org. Chem. 1990, 1, 23.
J.:
3. Tetrahedron Lett. 1995, 36, 5607.
< G. H., Lee H. K., Choi E. B., Kim B. T., Pak C. S.: https://doi.org/10.1016/0040-4039(95)01073-Q>
4. Tetrahedron Lett. 1972, 13, 737.
< S.-J., Sato Y., Kurata A.: https://doi.org/10.1016/S0040-4039(01)84425-7>
5a. Tetrahedron 2000, 56, 6223.
< T., Hanaki N., Yamada N., Asano T.: https://doi.org/10.1016/S0040-4020(00)00585-8>
5b. Tetrahedron Lett. 1998, 39, 6935.
< T., Yamada N., Asano T.: https://doi.org/10.1016/S0040-4039(98)01457-9>
6. The pKa of the hydrogen on the carbon bearing the sulfoxide group is four orders of magnitude higher than the pKa of the equivalent hydrogen on the carbon bearing the sulfone substituent.
7. Tetrahedron 2001, 57, 2609.
< I. E., Murphy F., Kumps L., Ates A., Touillaux R., Craig D., Carballaresb S., Dolan S.: https://doi.org/10.1016/S0040-4020(01)00079-5>
8. Preliminary results of this study has been published in the form of a communication: Org. Lett. 2005, 7, 2373.
< J., Pospíšil T., Markó I. E.: https://doi.org/10.1021/ol050649e>
9. Sulfoxides 1a and 7 were selected because the corresponding sulfones react very poorly (or not at all) under the standard Julia–Lythgoe conditions for electronic (1a) or steric (7) reasons.
10. The excess of benzoyl chloride was reacted with 3-(dimethylamino)propan-1-ol (neat) and the amine was removed upon aqueous acid work-up.
11. All the reactions presented in Table I were carried out on the mixture of adduct 4.
12a. J. Org. Chem. 1993, 58, 5008.
< E., Curran D. P.: https://doi.org/10.1021/jo00070a046>
12b. Eur. J. Inorg. Chem. 2004, 3393.
< A., Hilmersson G.: https://doi.org/10.1002/ejic.200400442>
13. Measured vs Ag/AgNO3, reference electrode in THF. See: Tetrahedron Lett. 1997, 38, 1137.
< M., Flowers R. A., Jr.: https://doi.org/10.1016/S0040-4039(97)00008-7>
14. Tetrahedron Lett. 1998, 39, 4429.
< M., Sealy J. M., Fuchs J. R., Flowers R. A., Jr.: https://doi.org/10.1016/S0040-4039(98)00839-9>
15. J. Org. Chem. 1979, 44, 713.
< C. G., Micha-Screttas M.: https://doi.org/10.1021/jo01319a011>
16a. Synthesis 1994, 34.
< D., Landini D., Penso M.: https://doi.org/10.1055/s-1994-25399>
16b. Tetrahedron Lett. 2004, 45, 825.
< R., Markó I. E.: https://doi.org/10.1016/j.tetlet.2003.11.034>
17. More polar and less polar refer to more and les polar (R,R) or (S,R) diastereoisomers based upon their migration on TLC.
18. In this context, it is interesting to note that the reductive cleavage of a benzoate group could be easily effected using SmI2 or electrochemical conditions, suggesting to a great acceptor ability of the benzoyl function. Tetrahedron Lett. 1991, 32, 1949.
< H., Stahnke M., Sauer G., Wiechert R.: https://doi.org/10.1016/0040-4039(91)85009-T>
19. J. Org. Chem. 1983, 48, 4022.
< P. L., Prowse K. S., Belill M. A.: https://doi.org/10.1021/jo00170a029>
20. SDBSWeb: http://www.aist.go.jp/RIODB/SDBS/ (National Institute of Advanced Industrial Science and Technology, 23.03.2005).
21. Biochemistry 1984, 23, 2691.
< J. S., Troy F. A.: https://doi.org/10.1021/bi00307a024>
22. Aldrich Library 1, 1201 B.
23. Tetrahedron 2004, 60, 6901.
< T., Hattori K., Sajiki H., Hirota K.: https://doi.org/10.1016/j.tet.2004.05.098>
24. J. Am. Chem. Soc. 1988, 110, 3530.
< G. A., Ngoviwatchai P., Tashtoush H. I., Pla-Dalmau A., Khanna R. K.: https://doi.org/10.1021/ja00219a030>
25. Tetrahedron Lett. 1984, 25, 5793.
< Y., Hioki T., Yoshida Z.: https://doi.org/10.1016/S0040-4039(01)81688-9>
26. Tetrahedron 1981, 37, 31.
< K., Nagira K., Wada F., Matsuda T.: https://doi.org/10.1016/S0040-4020(01)97711-7>
27. Tetrahedron 2003, 59, 6057.
< I., Dybowski P., Skowronska A.: https://doi.org/10.1016/S0040-4020(03)00977-3>
28. J. Org. Chem. 1992, 57, 2523.
< S. F., Daniel D., Cherney R. J., Liras S.: https://doi.org/10.1021/jo00035a004>
29. J. Org. Chem. 1979, 44, 713.
< C. G., Micha-Screttas M.: https://doi.org/10.1021/jo01319a011>