Collect. Czech. Chem. Commun.
     2005, 70, 539-549
  https://doi.org/10.1135/cccc20050539
  
The Site of Action of General Anesthetics - A Chemical Approach
Camille Sandorfy
Département de chimie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
References
1.  K. W.: Int. Rev. Neurobiol. 1985, 27, 1.
<https://doi.org/10.1016/S0074-7742(08)60555-3>
2.  I., Matsuki H., Kaminoh Y., Kaneshina S., Kamaya H.: Prog. Anesth. Mech. Jpn. Special Issue 2000, 6, 207.
3.  N. P., Lieb R. R.: Nature 1994, 367, 607.
<https://doi.org/10.1038/367607a0>
4.  G., Dumas M., Dupuis P., Guérin M., Sandorfy C.: Top. Curr. Chem. 1980, 93, 91.
<https://doi.org/10.1007/3-540-10058-X_9>
5.  R., Sandorfy C.: Biophys. Chem. 1985, 22, 249.
<https://doi.org/10.1016/0301-4622(85)80047-8>
6. Urry D. W., Sandorfy C. in: Drugs and Anesthetic Effects on Membrane Structure and Function (R. C. Alois, C. C. Curtain and L. M. Gordon, Eds), p. 91. Wiley–Liss, New York 1991.
7.  C.: Prog. Anesth. Mech. Jpn. Special Issue 1995, 3, 457.
8.  C.: Prog. Anesth. Mech. Jpn. Special Issue, 2000,6, 34.
9.  C. D.: Eur. J. Anaesth. 1995, 12, 5.
10.  M. D., Harrison N. L.: Cell Mol. Life Sci. 1999, 55, 1278.
<https://doi.org/10.1007/s000180050371>
11.  D., Pistis M., Peters J. A., Lambert J. J.: Trends Pharmacol. Sci. 1999, 20, 496.
<https://doi.org/10.1016/S0165-6147(99)01405-4>
12.  G., Richards C. D.: Br. J. Anaesth. 1993, 71, 134.
<https://doi.org/10.1093/bja/71.1.134>
13.  S. J., Ye Q., Wick M. J., Kotchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P., Harris R. A., Harrison N. L.: Nature 1997, 389, 385.
<https://doi.org/10.1038/38738>
14.  B. W.: Br. J. Anaesth. 2002, 89, 167.
<https://doi.org/10.1093/bja/aef165>
15.  J. R., Bertaccini E.: Br. J. Anaesth. 2002, 89, 32.
<https://doi.org/10.1093/bja/aef157>
16. Zahradník R., Hobza P.: Weak Intermolecular Interactions in Chemistry and Biology. Academia, Prague 1980.
17.  C. W.: Br. J. Anaesth. 1957, 29, 466.
<https://doi.org/10.1093/bja/29.10.466>
18.  R. H., Bagnall R. D., Bell W., Jones W. G. M.: Int. J. Quantum Chem., Quantum Biol. Symp. 1976 3, 171.
19.  E. R.: Fluorine Chem. Rev. 1969, 3, 1.
20.  D. A., Urban B. W.: J. Physiol. (London) 1986, 373, 311.
<https://doi.org/10.1113/jphysiol.1986.sp016049>
21.  P., Mulder F., Sandorfy C.: J. Am. Chem. Soc. 1981, 103, 136.
<https://doi.org/10.1021/ja00396a011>
22.  P., Mulder F., Sandorfy C.: J. Am. Chem. Soc. 1982, 104, 925.
<https://doi.org/10.1021/ja00368a001>
23.  T., Sandorfy C.: Nature 1974, 252, 471.
<https://doi.org/10.1038/252471a0>
24.  T., Sandorfy C.: J. Med. Chem. 1974, 17, 809.
<https://doi.org/10.1021/jm00254a006>
25.  G., Cole K. C., Massuda R., Sandorfy C.: Can. J. Chem. 1978, 56, 1681.
<https://doi.org/10.1139/v78-273>
26. Desiraju G. R., Steiner T.: The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press, Oxford 1999.
27. Jeffrey G. A., Saenger W.: Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin 1991.
28. Jeffrey G. A.: An Introduction to Hydrogen Bonding. Oxford University Press, Oxford 1997.
29. Scheiner S.: Hydrogen Bonding. A Theoretical Perspective. Oxford University Press, Oxford 1997.
30.  D. J.: Nature 1962, 195, 68.
<https://doi.org/10.1038/195068a0>
31.  D. J.: J. Chem. Soc. 1963, 1105.
<https://doi.org/10.1039/jr9630001105>
32.  R., Schleyer P. v. R.: J. Am. Chem. Soc. 1963, 85, 1715.
<https://doi.org/10.1021/ja00895a002>
33. Green R. D.: Hydrogen Bonding by C–H Groups. Macmillan, London 1974.
34.  R., Kennard O.: J. Am. Chem. Soc. 1982, 104, 5063.
<https://doi.org/10.1021/ja00383a012>
35.  G. R.: Acc. Chem. Res. 1991, 24, 270.
<https://doi.org/10.1021/ar00010a002>
36.  T.: J. Chem. Soc., Perkin Trans. 1995, 2, 1315.
<https://doi.org/10.1039/p29950001315>
37.  C., Ruiz de Azua M. C., Giribet C. G., Contreras R. H., Turi L., Dannenberg J. J., Rae I. D., Weingold J. A., Malagoli M., Zanasi R., Lazzeretti P.: J. Phys. Chem. 1994, 98, 8858.
<https://doi.org/10.1021/j100087a007>
38.  C. G., Vizioli C. V., Ruiz de Azua M. C., Contreras R. H., Dannenberg J. J., Masunov A.: J. Chem. Soc., Faraday Trans. 1996, 92, 3029.
<https://doi.org/10.1039/ft9969203029>
39.  P., Havlas Z.: Chem. Rev. 2000, 100, 4253.
<https://doi.org/10.1021/cr990050q>
40.  S. N., Herrebout W. A., van den Veken B. J.: J. Am. Chem. Soc. 2002, 124, 7490.
<https://doi.org/10.1021/ja0125220>
41.  S. N., Herrebout W. A., van der Veken B. J.: J. Am. Chem. Soc. 2002, 124, 11854.
<https://doi.org/10.1021/ja027610e>
42.  E. S., Zeegers-Huyskens T.: J. Phys. Chem. A 2002, 106, 6832.
<https://doi.org/10.1021/jp020426v>
43.  T., Saenger W.: J. Am. Chem. Soc. 1993, 115, 4540.
<https://doi.org/10.1021/ja00064a016>
44.  M. L.: J. Org. Chem. 1936, 1, 405.
<https://doi.org/10.1021/jo01234a001>
45.  M. L., Badger R. M.: J. Am. Chem. Soc. 1951, 73, 405.
46. Josien M. L., Sourisseau G. in: Hydrogen Bonding (D. Hadži, Ed.), p. 120. Pergamon Press, New York 1959.
47.  M. L., Saumagne P.: Bull. Soc. Chim. Fr.  1956, 23, 937.
48.  M., Perutz M. F.: J. Mol. Biol. 1988, 201, 751.
<https://doi.org/10.1016/0022-2836(88)90471-8>
49.  M. F.: Phil. Trans Roy. Soc. London, Ser. A 1993, 345, 105.
<https://doi.org/10.1098/rsta.1993.0122>
50.  M., Sundaralingam M.: Trends Biochem. Sci. 1997, 22, 97.
<https://doi.org/10.1016/S0968-0004(97)01004-9>
51.  S. K., Petsko G. A.: Science 1985, 229, 23.
<https://doi.org/10.1126/science.3892686>
52.  S. K., Petsko G. A.: FEBS Lett. 1986, 2003, 139.
<https://doi.org/10.1016/0014-5793(86)80730-X>
53.  T., Koellner G.: J. Mol. Biol. 2001, 305, 535.
<https://doi.org/10.1006/jmbi.2000.4301>
54.  R. U.: Acc. Chem. Res. 1996, 29, 373.
<https://doi.org/10.1021/ar9600087>
55.  J. L., Hamada F., Robinson K. D., Orr G. W., Vincent R. L.: Nature 1991, 349, 683.
<https://doi.org/10.1038/349683a0>
56.  S., Gomtsyan A., Simard M., Roelens S.: J. Am. Chem. Soc. 1994, 116, 4495.
<https://doi.org/10.1021/ja00089a056>
57.  I., Egli M.: Chem. Eur. J. 1997, 3, 1400.
<https://doi.org/10.1002/chem.19970030905>
58. Kiessling L. L., Young T., Mortell K. H. in: Glycoscience-Chemistry and Chemical Biology (B. Fraser-Reid, K. Tatsuta and J. Thiem, Eds), p. 1817. Springer-Verlag, Berlin 2001.
59.  W. I., Drickamer K.: Annu. Rev. Biochem. 1996, 65, 441.
<https://doi.org/10.1146/annurev.bi.65.070196.002301>
60. Sandorfy C. in: Molecular and Basic Mechanisms of Anesthesia (B. W. Urban and M. Barann, Eds), p. 66. Pabst Science Publishers, Lengerich 2002.
61. Gurd J. W. in: Neurobiology of Glyconjugates (R. U. Margolis and R. K. Margolis, Eds), p. 219. Plenum Press, New York 1989.
62.  A., Leblond C. P.: J. Cell Biol. 1967, 32, 27.
<https://doi.org/10.1083/jcb.32.1.27>
63.  K. H.: Prog. Histochem. Cytochem. 1973, 5, 1.
<https://doi.org/10.1016/S0079-6336(73)80009-9>
64.  H., Sharon N.: Chem. Rev. 1998, 98, 637.
<https://doi.org/10.1021/cr940413g>
65.  J. P., Reeber A., Vincendon G.: Biochim. Biophys. Acta 1981, 670, 393.
<https://doi.org/10.1016/0005-2795(81)90112-4>
66. Sharon N., Lis H.: Lectins, 2nd ed. Kluwer Academic Publishers, Dordrecht 2003.
67. Margolis R. K., Margolis R. U. (Eds): Neurobiology of Glyconjugates, p. 85. Plenum Press, New York 1989.
68. Carlson S. S. in: Neurobiology of Glycoconjugates (R. U. Margolis and R. K. Margolis, Eds), p. 309. Plenum Press, New York 1989.
69.  F. A.: Annu. Rev. Biochem. 1986, 55, 287.
<https://doi.org/10.1146/annurev.bi.55.070186.001443>
70. Quiocho F. A. in: Carbohydrate–Protein Interaction (E. Clarke and A. Wilson, Eds), p. 135. Springer-Verlag, Berlin 1988.
71. Johnson L. N., Cheetham J., McLaughlin P. J., Achary K. R., Barford D., Phillips D. C. in: Carbohydrate–Protein Interaction (A. E. Clarke and I. A. Wilson, Eds), p. 81. Springer-Verlag, Berlin 1988.
72.  R. G.: J. Biol. Chem. 1996, 271, 15521.
<https://doi.org/10.1074/jbc.271.26.15521>
73.  R. G.: Mol. Pharmacol. 1998, 54, 610.
74.  R. G., Johansson J. S.: Pharmacol. Rev. 1997, 47, 343.
75.  J. S., Eckenhoff R. G., Dutton P. L.: Anesthesiology 1995, 83, 316.
<https://doi.org/10.1097/00000542-199508000-00012>
76.  J. S., Sharf D., Davies L. A., Reddy K. S., Eckenhoff R. G.: Biophys. J. 2000, 78, 982.
<https://doi.org/10.1016/S0006-3495(00)76656-2>
77.  G. A., Johansson J. S.: Biochemistry 2002, 41, 4080.
<https://doi.org/10.1021/bi0160718>
78.  R. W.: Ann. N.Y. Acad. Sci. 1998, 845, 11.
79.  H., Jonas U., Kappel T., Hildebrandt H.: Ann. N.Y. Acad. Sci. 1998, 845, 72.
<https://doi.org/10.1111/j.1749-6632.1998.tb09663.x>
80.  S. I., Yamamura S., Handa K.: Ann. N.Y. Acad. Sci. 1998, 845, 1.
<https://doi.org/10.1111/j.1749-6632.1998.tb09657.x>
81.  R. W., Wu G., Lu Z. H., Kozireski-Chuback D., Fang Y.: Ann. N.Y. Acad. Sci. 1998, 845, 161.
<https://doi.org/10.1111/j.1749-6632.1998.tb09669.x>
82.  I.: Biochim. Biophys. Acta 1976, 455, 433.
<https://doi.org/10.1016/0005-2736(76)90316-3>
83.  I., Sundell S.: Chem. Phys. Lipids 1977, 20, 175.
<https://doi.org/10.1016/0009-3084(77)90033-0>
84.  P. G., Samuelsson B. E., Breimer M., Pascher I.: J. Mol. Recogn. 1989, 2, 103.
<https://doi.org/10.1002/jmr.300020302>
85.  P. G., Pascher I., Sundell S.: Chem. Phys. Lipids 1990, 52, 1.
<https://doi.org/10.1016/0009-3084(90)90002-9>
86.  H., Pascher I.: Chem. Phys. Lipids 1977, 20, 273.
<https://doi.org/10.1016/0009-3084(77)90068-8>
87.  A.: Glycobiology 1992, 2, 25.
<https://doi.org/10.1093/glycob/2.1.25>
88.  Y., Bignon J., Lambré C. R.: Glycobiology 1993, 3, 201.
<https://doi.org/10.1093/glycob/3.3.201>
89.  O. T., Hinderlich S., Landner J., Schwartz-Albiez R., Reutter W., Pawlita M.: Science 1999, 284, 1372.
<https://doi.org/10.1126/science.284.5418.1372>
90.  C., Stehling P., Schnitzer J., Reutter W., Horstkorte R.: J. Biol. Chem. 1998, 273, 19146.
<https://doi.org/10.1074/jbc.273.30.19146>


